(a) 328.6 kg m/s
The linear impulse experienced by the passenger in the car is equal to the change in momentum of the passenger:

where
m = 62.0 kg is the mass of the passenger
is the change in velocity of the car (and the passenger), which is

So, the linear impulse experienced by the passenger is

(b) 404.7 N
The linear impulse experienced by the passenger is also equal to the product between the average force and the time interval:

where in this case
is the linear impulse
is the time during which the force is applied
Solving the equation for F, we find the magnitude of the average force experienced by the passenger:

Answer: Find the answer in the explanation
Explanation: Given the Roman numeral and the representation
I. part of a coal-fired power plant
II. part of a nuclear power plant
III. part of a coal-fired power plant and part of a nuclear power plant
a.) Boiler : I
b.) Combustion chamber: I
c.) Condenser: I
d.) Control rod: II
e.) Generator: III
f.) Turbine: III
Toward the end processes part of both coal fire and nuclear power, they both make use of turbine and generator to generate electricity.
The potential energy of the skateboarder at the top of the ramp is
489.1 J.
<h3>Is kinetic energy always equal to potential energy?</h3>
The amount of kinetic energy change and the amount of potential energy change are equal in all physical processes that take place in closed systems. When the kinetic energy rises, the potential energy falls, and vice versa.
Potential energy is the stored energy in any object or system as a result of its position or component arrangement. However, external factors like air or height have no effect on it. The energy of a moving object or system is referred to as kinetic energy.
Potential energy = kinetic energy
Potential energy = 1/2mv²
Potential energy = 1/2 × 67×7.3
Potential energy = 489.1 J.
To know more about kinetic energy visit:
brainly.com/question/26472013
#SPJ1