The graph will be discrete because there is no such thing as a partial person to sign up and the booth is set up once each day for sign ups. So the last answer choice is the right one
Answer:
2 x 2 x 2 x 3
Step-by-step explanation:
Find two numbers that multiply together to form 24:
2 x 12 = 24
Find two numbers that multiply together to form 12, a factor of 24. Replace 12 with these numbers:
2 x (2 x 6) = 2 x 12 = 24
Find two numbers that multiply together to form 6, a factor of 12. Replace 6 with these numbers:
2 x (2 x (2 x 3)) = 2 x (2x6) = 2 x 12 = 24
Two and three cannot be factored any further, therefore the prime factors of 24 are 2, 2, 2, and 3.
Answer:
A) Sometimes
A ) Sometimes is the correct answer because b) always and c) never is not possible
it cannot be always measured 90 degrees
Answer: 
Step-by-step explanation:
<u>Given expression</u>
![\large\boxed{\frac{12[30 - (9+4^2)]}{|10|-|-6| } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%5Cfrac%7B12%5B30%20-%20%289%2B4%5E2%29%5D%7D%7B%7C10%7C-%7C-6%7C%20%7D%20%7D)
<u>Simplify the exponents</u>
![\large\boxed{=\frac{12[30 - (9+16)]}{|10|-|-6| } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D%5Cfrac%7B12%5B30%20-%20%289%2B16%29%5D%7D%7B%7C10%7C-%7C-6%7C%20%7D%20%7D)
Simplify values in the parenthesis
![\large\boxed{=\frac{12[30 - 25]}{|10|-|-6| } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D%5Cfrac%7B12%5B30%20-%2025%5D%7D%7B%7C10%7C-%7C-6%7C%20%7D%20%7D)
![\large\boxed{=\frac{12[5]}{|10|-|-6| } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D%5Cfrac%7B12%5B5%5D%7D%7B%7C10%7C-%7C-6%7C%20%7D%20%7D)
<u>Simplify absolute values (all positive)</u>
![\large\boxed{=\frac{12[5]}{10-6 } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D%5Cfrac%7B12%5B5%5D%7D%7B10-6%20%7D%20%7D)
![\large\boxed{=\frac{12[5]}{4 } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D%5Cfrac%7B12%5B5%5D%7D%7B4%20%7D%20%7D)
<u>Simplify by division</u>
![\large\boxed{=3~[5]}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D3~%5B5%5D%7D)
<u>Simplify by multiplication</u>

Hope this helps!! :)
Please let me know if you have any questions