9514 1404 393
Answer:
31.243 units
Step-by-step explanation:
The mnemonic SOH CAH TOA reminds you of the relationships between sides and angles in a right triangle. Using the attached figure, it is convenient to find the length of BE as an intermediate step in the solution.
Sin = Opposite/Hypotenuse
sin(30°) = BE/100
BE = 100·sin(30°)
Then ...
Tan = Opposite/Adjacent
tan(58°) = BE/x
x = BE/tan(58°) = 100·sin(30°)/tan(58°)
x ≈ 31.243 . . . . units
_____
<em>Comment on the figure</em>
The intermediate problem in creating the figure was to locate point D. That was accomplished by locating point C on a line at an angle of 58° CCW from the horizontal, using point B as a center. Then D is the intersection of BC with the x-axis. BE is drawn perpendicular to the x-axis.
Answer:
Step-by-step explanation:
The volume of the pyramid is given by:
where is the area of the base and is the height.
We know that the height is:
Thus we need to find the area of the square at the base.
The perimeter of the square is:
this means that the length of the sides of the square is :
Now we can find the area of the base which the area of the square:
and finally we find the volume:
Which rounded to the nearest tenth of a cubic centimeter is:
Answer:
y=2
Step-by-step explanation:
Hope it helps
Answer:
The correct option is;
B. I and II
Step-by-step explanation:
Statement I: The perpendicular bisectors of ABC intersect at the same point as those of ABE
The above statement is correct because given that ΔABC and ΔABE are inscribed in the circle with center D, their sides are equivalent or similar to tangent lines shifted closer to the circle center such that the perpendicular bisectors of the sides of ΔABC and ΔABE are on the same path as a line joining tangents to the center pf the circle
Which the indicates that the perpendicular the bisectors of the sides of ΔABC and ΔABE will pass through the same point which is the circle center D
Statement II: The distance from C to D is the same as the distance from D to E
The above statement is correct because, D is the center of the circumscribing circle and D and E are points on the circumference such that distance C to D and D to E are both equal to the radial length
Therefore;
The distance from C to D = The distance from D to E = The length of the radius of the circle with center D
Statement III: Bisects CDE
The above statement may be requiring more information
Statement IV The angle bisectors of ABC intersect at the same point as those of ABE
The above statement is incorrect because, the point of intersection of the angle bisectors of ΔABC and ΔABE are the respective in-centers found within the perimeter of ΔABC and ΔABE respectively and are therefore different points.
Answer:
73 ,,,,,,,,,,,,,,,,,,,,,,,