Answer:
Since molarity is defined as moles of solute per liter of solution, we need to find the number of moles of nitric acid, and the volume of solution.
molar mass of nitric acid (HNO3) = 1 + 14 + (3x16) = 15 + 48 = 63 g/mole
1.50 g/ml x 1000 ml = 1500 g/liter
1500 g/liter x 0.90 = 1350 g/liter of pure HNO3 (the 0.9 is to correct for the fact that it is 90% pure)
1350 g/liter x 1 mole/63 g = 21.43 moles/liter = 21 Molar HNO3
= 21 Molar of HNO3
According to one acid-base theory, a water molecule acts as an acid when the water molecule (3) donates an H+.
Answer:
The concentration of hydrochloric acid would be estimated to be less.
Explanation:
This is because, the hydroxyl ions from water react with the hydrogen ions from the hydrochloric acid, hence decreasing the moles of hydrogen ions which lowers the acidic strength of Hydrochloric acid.
Answer: It's equal to 10^(-2.3), or 0.00501 M, or 5.01 * 10^-3 moles/Liter
Explanation:
Well, pH = - log[H+]
Or, in words, pH is equal to -1 multiplied by the logarithm (base 10) of the hydrogen ion concentration.
So you have 2.3 = -log[H+]. We want to isolate the H+, so let's start simplifying the right hand side of the equation. First, we multiply both sides by -1.
-2.3=log[H+]
Now, the definition of a logarithm says that if the log (base 10) of [H+] is -2.3, then 10 raised to the -2.3 power is [H+]
So on each side of the equation, we raise 10 to the power of that side of the equation.
10^(-2.3) = 10^(log[H+])
and because 10^log cancels out...
10^(-2.3) = [H+]
Now we've solved for [H+], the hydrogen ion concentration!