Q: What is the change of entropy for 3.0 kg of water when the 3.0 kg of water is changed to ice at 0 °C? (Lf = 3.34 x 105 J/kg)
Answer:
-3670.33 J/K
Explanation:
Entropy: This can be defined as the degree of randomness or disorderliness of a substance. The S.I unit of Entropy is J/K.
Mathematically, change of Entropy can be expressed as,
ΔS = ΔH/T ....................................... Equation 1
Where ΔS = Change of entropy, ΔH = heat change, T = temperature.
ΔH = -(Lf×m).................................... Equation 2
Note: ΔH is negative because heat is lost.
Where Lf = latent heat of ice = 3.34×10⁵ J/kg, m = 3.0 kg, m = mass of water = 3.0 kg
Substitute into equation
ΔH = -(3.34×10⁵×3.0)
ΔH = - 1002000 J.
But T = 0 °C = (0+273) K = 273 K.
Substitute into equation 1
ΔS = -1002000/273
ΔS = -3670.33 J/K
Note: The negative value of ΔS shows that the entropy of water decreases when it is changed to ice at 0 °C
Answer:
The independent variable is the condition that you change in an experiment. It is the variable you control.
Explanation:
It is called independent because its value does not depend on and is not affected by the state of any other variable in the experiment. Sometimes you may hear this variable called the "controlled variable" because it is the one that is changed.
They go through radioactive decay because when atoms are unstable by going through it they are emitting radiation in natural process and they gain stability by losing energy.
Answer:
B
Explanation:
And, water is called the "universal solvent" because it dissolves more substances than any other liquid. This allows the water molecule to become attracted to many other different types of molecules.
Plants don't need sap. They make it like Maple trees.