D. A ll of the above. catalyst reduces the activation energy thereby making the reaction faster. an increase in temperature increases the kinetic energy and no of collisions making reaction faster for an endothermic reaction while decrease in temperature favors an exothermic reaction.
increase in concentration increases the molecules reacting so the reaction is faster and vice versa.
Bestie since it’s Cl2, put 2 next to KCl. That means you need to 2 moles of K, so put 2 next to KI. That’s it
Best Answer: o.n. = 70 means 70% isoctane for which o.n. = 100 and 30% of heptane for which o.n. = 0
Answer:
= 16.91100
Explanation:
Adding up the two equivalent fractions
871 • 10 + 8201 16911
____________________ = 16.91100
1000 1000
Answer : The molarity after a reaction time of 5.00 days is, 0.109 M
Explanation :
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant = 
t = time taken = 5.00 days
[A] = concentration of substance after time 't' = ?
= Initial concentration = 0.110 M
Now put all the given values in above equation, we get:
![9.7\times 10^{-6}=\frac{1}{5.00}\left (\frac{1}{[A]}-\frac{1}{(0.110)}\right)](https://tex.z-dn.net/?f=9.7%5Ctimes%2010%5E%7B-6%7D%3D%5Cfrac%7B1%7D%7B5.00%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%280.110%29%7D%5Cright%29)
![[A]=0.109M](https://tex.z-dn.net/?f=%5BA%5D%3D0.109M)
Hence, the molarity after a reaction time of 5.00 days is, 0.109 M