Answer:
c. HF can participate in hydrogen bonding.
Explanation:
<u>The boiling points of substances often reflect the strength of the </u><u>intermolecular forces</u><u> operating among the molecules.</u>
If it takes more energy to separate molecules of HF than of the rest of the hydrogen halides because HF molecules are held together by stronger intermolecular forces, then the boiling point of HF will be higher than that of all the hydrogen halides.
A particularly strong type of intermolecular attraction is called the hydrogen bond, <em>which is a special type of dipole-dipole interaction between the hydrogen atom in a polar bond</em>, such as N-H, O-H, or F-H, and an electronegative O, N, or F atom.
Answer:
• The actual number of moles of each element in the smallest unit of the compound. •In water (H 2 O), ammonia (NH 3), methane (CH 4), and ionic compounds, the empirical and molecular
Explanation:
D.
Blue litmus paper turns red when placed in a base.
Answer:
Ether
SN1 mechanism
Explanation:
The nucleophile in this reaction is CH3OH. It is a poor nucleopile. We already know that a poor nucleophile reacting with a tertiary alkyl halide often leads to the substitution product as the major product.
Also, the iodide ion is a good leaving group. This makes the SN1 substitution more likely yielding the ether as the major product as shown in the image attached.