Answer:
This means the amount of PbCrO4 will precipitate first, with a [Pb^2+] concentration of 1.8*10^-12 M
Explanation:
Step 1: Data given
Molarity of Na2CrO4 = 0.010 M
Molarity of NaBr = 2.5 M
Ksp(PbCrO4) = 1.8 * 10^–14
Ksp(PbBr2) = 6.3 * 10^–6
Step 2: The balanced equation
PbCrO4 →Pb^2+ + CrO4^2-
PbBr2 → Pb^2+ + 2Br-
Step 3: Define Ksp
Ksp PbCrO4 = [Pb^2+]*[CrO4^2-]
1.8*10^-14 = [Pb^2+] * 0.010 M
[Pb^2+] = 1.8*10^-14 /0.010
[Pb^2+] = 1.8*10^-12 M
The minimum [Pb^2+] needed to precipitate PbCrO4 is 1.8*10^-12 M
Ksp PbBr2 = [Pb^2+][Br-]²
6.3 * 10^–6 = [Pb^2+] (2.5)²
[Pb^2+] = 1*10^-6 M
The minimum [Pb^2+] needed to precipitate PbBr2 is 1*10^-6 M
This means the amount of PbCrO4 will precipitate first, with a [Pb^2+] concentration of 1.8*10^-12 M
Answer:
All igneous rocks the basis of the rock cycle are formed by plate tectonics. ... The heat from the mantle that fuels plate tectonics causes both igneous and sedimentary rocks to be turned into metamorphic rocks. The metamorphic rocks can be eroded into sedimentary rocks are remelted back into igneous.
Explanation:
The answer is: lose electrons and form positive ions.
Most metals have strong metallic bond, because of strong electrostatic attractive force between valence electrons (metals usually have low ionization energy and lose electrons easy) and positively charged metal ions.
The ionization energy (Ei) is the minimum amount of energy required to remove the valence electron, when element lose electrons, oxidation number of element grows (oxidation process).
For example, magnesium has atomic number 12, which means it has 12 protons and 12 electrons. It lost two electrons to form magnesium cation (Mg²⁺) with stable electron configuration like closest noble gas neon (Ne) with 10 electrons.
Electron configuration of magnesium ion: ₁₂Mg²⁺ 1s² 2s² 2p⁶.
A condensation reaction forming a glycosidic bond. so in other words a monosaccharide joining together to form a disaccharide.
Answer:
This is not an answer its just to get points