1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
enyata [817]
3 years ago
10

The electric field between two parallel plates is uniform, with magnitude 628 N/C. A proton is held stationary at the positive p

late, and an electron is held stationary at the negative plate. The plate separation is 4.22 cm. At the same moment, both particles are released.
A. Calculate the distance (in cm) from the positive plate at which the two pass each other.
B. Repeat part (a) for a sodlum lon (Nat) and a chlorlde lon (CI).
Physics
1 answer:
aliina [53]3 years ago
7 0

Answer:

Answer is explained in the explanation section below.

Explanation:

Solution:

Data Given:

Electric Field between two parallel plates = 628 N/C

Separation = 4.22 cm

a) In this part, we are asked to calculate the distance from positive plate at which the electron and proton pass each other.

Solution:

First of all:

Force on proton due to the Electric field between the plates is:

F_{p} = q_{p}E

and, we know that, F = ma

So,

m_{p}a = q_{p}E

a = \frac{q_{p}.E }{m_{p} }      Equation 1

So,

The distance covered by the electron is:

S = ut + 1/2at^{2}

Here, u = 0.

S = 1/2at^{2}

Put equation 1 into the above equation:

S = 1/2 x (\frac{q_{p}.E }{m_{p} }  )t^{2}      Equation 2

So,  

Similarly, the distance covered by electron will be:

(D-S) = 1/2 x (\frac{q_{e}.E }{m_{e} }  )t^{2}    Equation 3

We know that the charge of electron is equal to the charge of proton so,

q_{p} = q_{e} = q

By dividing the equation 2 by equation 3, we get:

\frac{S}{D-S} = \frac{m_{e} }{m_{p} }

Solve the above equation for S,

Sm_{p} = m_{e}D - m_{e}S

So,

S = \frac{m_{e}.D }{(m_{e} + m_{p})  }

Plugging in the values,

As we know the mass of electron is 9.1 x 10^{-31} and the mass of proton is 1.67 x 10^{-27}

S = \frac{9.1 . 10^{-31} . 4.22 }{(9.1 . 10^{-31} + 1.67 . 10^{-27}  }

S = 0.002298 cm (Distance from the positive plate at which the two pass each other)

b) In this part, we to calculate distance for Sodium ion and chloride ion as above.

So,

we already have the equation, we need to put the values in it.

So,

S = \frac{m_{Cl}.D }{(m_{Cl} + m_{Na})  }

As we know the mass of chlorine is 35.5 and of sodium is 23

S = \frac{35.5 . 4.22}{(35.5 + 23)}

S = 2.56 cm

You might be interested in
Assume that a satellite orbits mars 150km above its surface. Given that the mass of mars is 6.485 X 10^23kg, and the radius of m
Kisachek [45]
<span>3598 seconds The orbital period of a satellite is u=GM p = sqrt((4*pi/u)*a^3) Where p = period u = standard gravitational parameter which is GM (gravitational constant multiplied by planet mass). This is a much better figure to use than GM because we know u to a higher level of precision than we know either G or M. After all, we can calculate it from observations of satellites. To illustrate the difference, we know GM for Mars to within 7 significant figures. However, we only know G to within 4 digits. a = semi-major axis of orbit. Since we haven't been given u, but instead have been given the much more inferior value of M, let's calculate u from the gravitational constant and M. So u = 6.674x10^-11 m^3/(kg s^2) * 6.485x10^23 kg = 4.3281x10^13 m^3/s^2 The semi-major axis of the orbit is the altitude of the satellite plus the radius of the planet. So 150000 m + 3.396x10^6 m = 3.546x10^6 m Substitute the known values into the equation for the period. So p = sqrt((4 * pi / u) * a^3) p = sqrt((4 * 3.14159 / 4.3281x10^13 m^3/s^2) * (3.546x10^6 m)^3) p = sqrt((12.56636 / 4.3281x10^13 m^3/s^2) * 4.458782x10^19 m^3) p = sqrt(2.9034357x10^-13 s^2/m^3 * 4.458782x10^19 m^3) p = sqrt(1.2945785x10^7 s^2) p = 3598.025212 s Rounding to 4 significant figures, gives us 3598 seconds.</span>
8 0
3 years ago
This diagram shows how a certain type of precipitation is formed. Water drops are caught in up-drafts and down-drafts, over and
Svet_ta [14]

It would be B. Hail.

5 0
3 years ago
What is the force of gravity acting on a 1-kg m mass? (g = 9.8 m/s ^ 2)
Ksenya-84 [330]

Answer: Use this F=Ma.

Explanation: So your answer will be

F=1 Kg+9.8 ms-2

So the answer will be

F=9.8N

How'd I do this?

I just used Newton's second law of motion.

I'll also put the derivation just in case.

Applied force α (Not its alpha, proportionality symbol) change in momentum

Δp α p final- p initial

Δp α mv-mu (v=final velocity, u=initial velocity and p=v*m)

or then

F α m(v-u)/t

So, as we know v=final velocity & u= initial velocity and v-u/t =a.

So F α ma, we now remove the proportionality symbol so we'll add a proportionality constant to make the RHS & LHS equal.

So, F=<em>k</em>ma (where k is the proportionality constant)

<em>k</em> is 1 so you can ignore it.

So, our equation becomes F=ma

7 0
3 years ago
How does surface air flow in a middle-latitude cyclone in the northern hemisphere? (1 point)?
Vikki [24]

convergent and counterclockwise

hope it helps :)

3 0
3 years ago
Read 2 more answers
Plz help me. I need urgent Why a magnetic compass is used to determine direction? Why a nail gets magnetized when kept close to
docker41 [41]

Answer:

Compasses are mainly used in navigation to find direction on the earth. This works because the Earth itself has a magnetic field which is similar to that of a bar magnet. The compass needle aligns with the Earth's magnetic field direction and points north-south. Also, In a magnet all the domains are oriented in the same direction. In the case of a nail, the domains can be aligned in the same direction causing the nail to become magnetic. That is because if you hang a bar magnet from a thread, the north pole will point to magnetic north. When you bring one north pole close to another north pole they repel each other. You can feel the two magnets pushing each other apart.

4 0
3 years ago
Other questions:
  • A 0.5 kg ball moving at a speed of 3m/s rolls up a hill. How high does the ball roll before it stops
    6·1 answer
  • 2. A can filled with sand has a mass of 0.65kg is swung overhead in a horizontal circle of radius 0.70m at a constant rate of 2.
    9·1 answer
  • Gravity can be described as
    13·2 answers
  • A mixture of helium and oxygen is used in scuba diving tanks to help prevent ""the bends"". 46 L helium and 12 L oxygen are comb
    11·1 answer
  • To verify that this expression for (vf)α has the correct units of velocity, you need to perform some unit analysis. begin by fin
    6·1 answer
  • What type of wave is created when banging a drum
    13·2 answers
  • Define very long base line interferometry
    8·2 answers
  • The lungs are ___________ to the heart
    11·2 answers
  • Discuss why Wolpert says we have a brain.
    7·2 answers
  • The force created when the court pushes LeBron James upwards is equal to which force?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!