The Answer to this question would Be A
Hope this helps
Please mark as brainliest(;
To develop this problem, it is necessary to apply the concepts related to Beat
The Beat is an acoustic phenomenon that is generated by two sine waves interfering with slightly different frequencies. The beat frequency is equal to the difference in the frequencies of the two original waves:

Our values are given as


For the particular case we have two possible frequencies:






Therefore the two possibles frequencies of the other players note are 437.9Hz and 442.1Hz
The contact force is indeed caused by "Contact".
Air resistance is basically a type of friction, which is apparently present providing two object contact.
The rest selections are all interaction force, which is not necessarily caused by contact.
Bohr's equation for the change in energy is

where
h = Planck's constant
c == the velocity of light
λ = wavelength.
The velocity is related to wavelength and frequency, f, by
c = fλ
Let us examine the given answers on the basis of the given equations.
a. As λ increases, f decreases and ΔE decreases.
TRUE
b. As λ increases, f increases and ΔE increases.
FALSE
c. As λ increases, f increases and ΔE decreases.
FALSE
Answer:
As the wavelength increases, the frequency decreases and energy decreases.
Answer:
a) 
b) 
c) 
d) 
e)
&
f) 
Explanation:
From the question we are told that:
Stretch Length 
Mass 
Total stretch length
a)
Generally the equation for Force F on the spring is mathematically given by


b)Generally the equation for Max Velocity of Mass on the spring is mathematically given by

Where
A=Amplitude

And

Therefore


c)
Generally the equation for Max Acceleration of Mass on the spring is mathematically given by



d)
Generally the equation for Total mechanical energy of Mass on the spring is mathematically given by



e)
Generally the equation for the period T is mathematically given by



Generally the equation for the Frequency is mathematically given by


f)
Generally the Equation of time-dependent vertical position of the mass is mathematically given by

Where
'= signify order of differentiation