I have the same question right now and i think that it is D
Answer:
There is an overall release of energy when bonds form.
Explanation:
There is a general release of energy when bonds form. This energy is called bond energy.
Bond energy is involved in the breakdown or formation of one or more bonds between atoms of a molecule. Atoms bond with each other to achieve their electronic stability, that is, they move from a higher energy situation to a lower energy one. With this we can state that when the bond between atoms is formed, energy is released; therefore, its breakdown depends on energy absorption.
49 neutrons in each nucleus.
<h3>Explanation</h3>
For each nucleus:
Mass number = Number of protons + Number of neutrons.
The atomic number of a nucleus is the same as its number of protons. The atomic number of the nucleus here is 31. There are 31 protons in each nucleus.
- Mass number = 80;
- Number of protons = Atomic number = 31;
- The number of neutrons is to be found.
Again,
Mass number = Number of protons + Number of neutrons.
80 = 31 + Number of neutrons.
Number of neutrons = 80 - 31 = 49.
As we know that
<span>V1/T1 = V2/T2
V1 = 9.10 L
T1 = 471 K
V2 = 2.50 L
T2 = 2.5 x 471 / 9.10 = 129.3 K
T2 = 129.3 - 273 =
-143.6 deg Celsiu
hope it helps</span>
Answer:
Decreasing the volume of solvent in the solution of molecule A
Explanation:
We know that one of the factors that affect the rate of reaction is the concentration of the reactants. The greater the concentration of reactants, the faster the rate of reaction (the greater the frequency of collision between reactants).
Hence, when we decrease the volume of solvent in the solution of molecule A, the concentration of the solution increases and consequently more particles of molecule A are available to collide with particles of molecule B resulting in a higher rate of reaction.