Answer:
the mesopelagic, dysphotic, or twilight zone
Explanation:
Marine zones are the divisions of the ocean. The ocean is divided into two basic parts; the pelagic or open ocean, and the benthic or sea floor.
The pelagic zone is further divided into five broad zones according to how far down sunlight penetrates and they are:
1) the epipelagic, euphotic, or sunlit zone: the top layer of the ocean where enough sunlight penetrates for plants to carry on photosynthesis.
2) the mesopelagic, dysphotic, or twilight zone: a dim zone where some light penetrates, but not enough for plants to grow.
3) the bathypelagic, aphotic, or midnight zone: the deep ocean layer where no light penetrates.
4) the abyssal zone: the pitch-black bottom layer of the ocean; the water here is almost freezing and its pressure is immense.
5) the hadal zone: the waters found in the ocean's deepest trenches.
Answer:-
2747.7 Cal mol -1
Explanation:-
Molar heat of Fusion is defined as the amount of heat necessary to melt (or freeze) 1 mole of a substance at its melting point.
Atomic mass of Iron = 55.845 g mol-1
Mass of Iron = 200 g
Number of moles of Iron = 200 g / (55.845 g mol-)
= 3.581 moles
Heat released = 9840 Cal
Molar heat of Fusion = Heat released / Number of moles
= 9840 Cal / 3.581 moles
= 2747.7 Cal mol -1
Answer:
5.89 Liters
Explanation:
Lung capacity=(2.4/0.11) x 0.27
KMnO4 has the incorrect set of oxidation numbers. Whenever there is an alkali metal, it has an oxidation number of +1. As you can see, K is said to have an oxidation number of +2, so it is incorrect.
Answer:
Enzymes are homogenous, thermolabile,biological catalyst that increases the reaction rate of a chemical reaction.
Explanation:
Enzymes are used as catalyst in many biochemical reactions.Enzymes basically interact in a complementary fashion with the transition state of the reaction thus helping to decrease the energy barrier called activation energy.Thus enzymes helps to stimulate the velocity of biochemical reaction.
It is very important point to note that enzymes do not affect the reaction equilibrium.