The solution for this problem is:
Let x denote the specific rotation, R; andLet y denote the specific rotation, S = -x
Solution:60 x - 40 x/100 = - 43
20x = - 4300Divide both sides by 20The answer is:x = - 215 is the specific rotation of the pure r isomer.
Because Air itself is not an element. it is made up by different elements such as Oxygen and nitrogen. since its made up of a mix of different elements, its rather a homogeneous mixture :)
Number of moles of oxygen = x
number of moles of nitrogen = y
x = 2y
initial pressure, p1 = 0.8 atm
final pressure, p2 = 1.10 atm
At constant volume and temperature p1 / n1 = p2 / n2
=> p1 / p2 = n1 / n2
n1 = x + y = 2y + y = 3y
n2 = 0.2 + 3y
=> p1 / p2 = 3y / (0.2 + 3y)
=> 0.8 / 1.10 = 3y / (0.2 + 3y)
=> 0.8 (0.2 + 3y) = 1.10 (3y)
0.16 + 2.4y = 3.3y
=> 3.3y - 2.4y = 0.16
=> 0.9y = 0.16
=> y = 0.16 / 0.9
=. x = 2*0.16/0.9 = 0.356
Answer: 0.356 moles O2
The missing question is:
<em>What is the percent efficiency of the laser in converting electrical power to light?</em>
The percent efficiency of the laser that consumes 130.0 Watt of electrical power and produces a stream of 2.67 × 10¹⁹ 1017 nm photons per second, is 1.34%.
A particular laser consumes 130.0 Watt (P) of electrical power. The energy input (Ei) in 1 second (t) is:

The laser produced photons with a wavelength (λ) of 1017 nm. We can calculate the energy (E) of each photon using the Planck-Einstein's relation.

where,

The energy of 1 photon is 6.52 × 10⁻²⁰ J. The energy of 2.67 × 10¹⁹ photons (Energy output = Eo) is:

The percent efficiency of the laser is the ratio of the energy output to the energy input, times 100.

The percent efficiency of the laser that consumes 130.0 Watt of electrical power and produces a stream of 2.67 × 10¹⁹ 1017 nm photons per second, is 1.34%.
You can learn more about lasers here: brainly.com/question/4869798