Answer:
- 178 ºC
Explanation:
The ideal gas law states that :
PV = nRT,
where P is the pressure, V is the volume, n is number of moles , R is the gas constant and T is the absolute temperature.
For the initial conditions :
P₁ V₁ = n₁ R T₁ (1)
and for the final conditions:
P₂V₂= n₂ R T₂ where n₂ = n₁/2 then P₂ V₂ = n₁/2 T₂ (2)
Assuming V₂ = V₁ and dividing (2) by Eqn (1) :
P₂ V₂ = n₁/2 R T₂ / ( n₁ R T₁) then P₂ / P₁ = 1/2 T₂ / T₁
4.10 atm / 25.7 atm = 1/2 T₂ / 298 K ⇒ T₂ = 0.16 x 298 x 2 = 95.1 K
T₂ = 95 - 273 = - 178 º C
Answer:
Final concentration of NaOH = 0.75 M
Explanation:
For
:-
Given mass = 90.0 g
Molar mass of NaOH = 39.997 g/mol
The formula for the calculation of moles is shown below:
Thus,

Molarity is defined as the number of moles present in one liter of the solution. It is basically the ratio of the moles of the solute to the liters of the solution.
The expression for the molarity, according to its definition is shown below as:
Where, Volume must be in Liter.
It is denoted by M.
Given, Volume = 3.00 L
So,
<u>Final concentration of NaOH = 0.75 M</u>
Yes what do u need help with
John Dalton
"matter cannot be created nor destroyed or divided into smaller particles"