Moles Cu+2 = M * V
= 0.05 L * 0.011 m
= 0.00055 moles
when the molar ratio of Cu2+: EDTA = 1:1 so moles od EDTa also =0.00055 moles
and when the Molarity of EDTa = 0.0630 M
∴ Volume of EDTA = moles / Molarity
= 0.00055 / 0.0630
= 0.0087 L = 8.7 L
Answer:
Second option - The bond is very polar
Explanation:
Electronegativity of an basically refers to the degree at which an electron is able to attract electrons to itself.
There are different types of bonds between atoms, depending on the electronegativity of the atoms.
When there is a large difference in electronegativity, it pretty much means that one atom would draw electrons more than the other. When this happens, the bond is said to be polar because there is uneven distribution of the charges.
The second option is the correct answer in thus question.
Answer:
–36 KJ.
Explanation:
The equation for the reaction is given below:
2B + C —› D + E. ΔH = – 24 KJ
From the equation above,
1 mole of D required – 24 KJ of energy.
Now, we shall determine the energy change associated with 1.5 moles of D.
This can be obtained as illustrated below:
From the equation above,
1 mole of D required – 24 KJ of energy
Therefore,
1.5 moles of D will require = 1.5 × – 24 = –36 KJ.
Therefore, –36 KJ of energy is associated with 1.5 moles of D.
Ca (Clo3)2(s) ⇒ Ca Cl2 (s) + 3 O2 (g)
You need to monitor the solution to see when the crystals start gathering at the bottom of the solution. You can slowly add alum until it stops dissolving. The point just before it starts its sedimentation at the bottom is the point when the solution is saturated.