The distance between is (8,6).
Recall the sum identity for cosine:
cos(a + b) = cos(a) cos(b) - sin(a) sin(b)
so that
cos(a + b) = 12/13 cos(a) - 8/17 sin(b)
Since both a and b terminate in the first quadrant, we know that both cos(a) and sin(b) are positive. Then using the Pythagorean identity,
cos²(a) + sin²(a) = 1 ⇒ cos(a) = √(1 - sin²(a)) = 15/17
cos²(b) + sin²(b) = 1 ⇒ sin(b) = √(1 - cos²(b)) = 5/13
Then
cos(a + b) = 12/13 • 15/17 - 8/17 • 5/13 = 140/221
A. A 90° counterclockwise rotation of trapezoid JKLM about the origin will move angle L onto angle R.
Step-by-step explanation:
Since both the trapezoids, trapezoid JKLM and PQRS are congruent, we can do any transformation, may be rotation, reflection and translation.
A 90° counterclockwise rotation of trapezoid JKLM about the origin will move angle L onto angle R is the true statement others are incorrect statements.
When the Preimage is rotated 90° counterclockwise rotation, then its coordinates (x,y) changed into (-y,x)
Answer:
b = 50%
Step-by-step explanation:
P(Heart or Club)
= P(Heart) + P(Club)
= 13/52 + 13/52
= .25 + .25
= .5 --> 50%
Will you please provide more information and state a clear question