Step-by-step explanation:
a=-4
a=-2
(a-(-4)(a-2)
(a+4)(a-2)
aa-2a+4a-8
a2-2a-8
Answer:
y = x^(sin(x))
y = e^(SIN(x)*LN(x))
y' = (COS(x)·LN(x) + SIN(x)/x)*e^(SIN(x)*LN(x))
y' = (COS(x)·LN(x) + SIN(x)/x)*x^(SIN(x))
Answer:
The probability that the child must wait between 6 and 9 minutes on the bus stop on a given morning is 0.148.
Step-by-step explanation:
Let the random variable <em>X</em> represent the time a child spends waiting at for the bus as a school bus stop.
The random variable <em>X</em> is exponentially distributed with mean 7 minutes.
Then the parameter of the distribution is,
.
The probability density function of <em>X</em> is:

Compute the probability that the child must wait between 6 and 9 minutes on the bus stop on a given morning as follows:

![=\int\limits^{9}_{6} {\frac{1}{7}\cdot e^{-\frac{1}{7} \cdot x}} \, dx \\\\=\frac{1}{7}\cdot \int\limits^{9}_{6} {e^{-\frac{1}{7} \cdot x}} \, dx \\\\=[-e^{-\frac{1}{7} \cdot x}]^{9}_{6}\\\\=e^{-\frac{1}{7} \cdot 6}-e^{-\frac{1}{7} \cdot 9}\\\\=0.424373-0.276453\\\\=0.14792\\\\\approx 0.148](https://tex.z-dn.net/?f=%3D%5Cint%5Climits%5E%7B9%7D_%7B6%7D%20%7B%5Cfrac%7B1%7D%7B7%7D%5Ccdot%20e%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%20x%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B7%7D%5Ccdot%20%5Cint%5Climits%5E%7B9%7D_%7B6%7D%20%7Be%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%20x%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C%3D%5B-e%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%20x%7D%5D%5E%7B9%7D_%7B6%7D%5C%5C%5C%5C%3De%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%206%7D-e%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%209%7D%5C%5C%5C%5C%3D0.424373-0.276453%5C%5C%5C%5C%3D0.14792%5C%5C%5C%5C%5Capprox%200.148)
Thus, the probability that the child must wait between 6 and 9 minutes on the bus stop on a given morning is 0.148.
Answer:
A) (3,-8); Reflection
Step-by-step explanation:
The question kind of gave you a hint. Look at how the coordinate point is arranged...
(-y,-x)
That means all positive become negatives and all negatives become positives. This gives you the coordinate of (3,-8).
As for reflection or rotation, the image's coordinates FLIPPED, like how images do in a mirror's reflection.
This means the answer would be A) (3,-8); Reflection.
The solution to given system of equations is (x, y) = (2, -1)
<em><u>Solution:</u></em>
Given system of equations are:
-1x + 2y = -4 -------- eqn 1
4x + 3y = 5 ------- eqn 2
We can solve the above system of equations by elimination method
<em><u>Multiply eqn 1 by 4</u></em>
4(-1x + 2y = -4)
-4x + 8y = -16 ------ eqn 3
<em><u>Add eqn 2 and eqn 3</u></em>
4x + 3y = 5
-4x + 8y = -16
( + ) --------------------
0x + 11y = -16 + 5
11y = -11
y = -1
<em><u>Substitute y = -1 in eqn 1</u></em>
-1x + 2(-1) = -4
-x -2 = -4
-x = -4 + 2
-x = -2
x = 2
<em><u>Check the answer:</u></em>
Substitute x = 2 and y = -1 in eqn 2
4x + 3y = 5
4(2) + 3(-1) = 5
8 - 3 = 5
5 = 5
Thus the obtained answer is correct
Thus the solution to given system of equations is (x, y) = (2, -1)