When you look at the graph, the X is the x value and the one on the f(x) is the y value, imagian it is on a graph and x is the steps you have to walk then imagain a ladder you have to go as high as the f(x) value says, then mark them. if they follow a pattern then write it down, if it does not then write incosentant.
Have a nice day.
Answer:
First, a absolute value function is something like:
y = f(x) = IxI
remember how this work:
if x ≥ 0, IxI = x
if x ≤ 0, IxI = -x
Notice that I0I = 0.
And the range of this function is all the possible values of y.
For example for the parent function IxI, the range will be all the positive reals and the zero.
First, if A is the value of the vertex of the absolute function, then we know that A is the maximum or the minimum value of the function.
Now, if the arms of the graph open up, then we know that A is the minimum of the function, and the range will be:
y ≥ A
Or all the real values equal to or larger than A.
if the arms of the graph open downwards, then A is the maximum of the function, and we have that the range is:
y ≤ A
Or "All the real values equal to or smaller than A"
First, simplify out the brackets:
-20 - 4n = -12
Then, combine like terms by moving the -20 to the other side
-4n = -12 + 20
-4n = 8
Divide by -4 on both sides to isolate the n
n = 8/-4
n = -2
The area of the triangle is
A = (xy)/2
Also,
sqrt(x^2 + y^2) = 19
We solve this for y.
x^2 + y^2 = 361
y^2 = 361 - x^2
y = sqrt(361 - x^2)
Now we substitute this expression for y in the area equation.
A = (1/2)(x)(sqrt(361 - x^2))
A = (1/2)(x)(361 - x^2)^(1/2)
We take the derivative of A with respect to x.
dA/dx = (1/2)[(x) * d/dx(361 - x^2)^(1/2) + (361 - x^2)^(1/2)]
dA/dx = (1/2)[(x) * (1/2)(361 - x^2)^(-1/2)(-2x) + (361 - x^2)^(1/2)]
dA/dx = (1/2)[(361 - x^2)^(-1/2)(-x^2) + (361 - x^2)^(1/2)]
dA/dx = (1/2)[(-x^2)/(361 - x^2)^(1/2) + (361 - x^2)/(361 - x^2)^(1/2)]
dA/dx = (1/2)[(-x^2 - x^2 + 361)/(361 - x^2)^(1/2)]
dA/dx = (-2x^2 + 361)/[2(361 - x^2)^(1/2)]
Now we set the derivative equal to zero.
(-2x^2 + 361)/[2(361 - x^2)^(1/2)] = 0
-2x^2 + 361 = 0
-2x^2 = -361
2x^2 = 361
x^2 = 361/2
x = 19/sqrt(2)
x^2 + y^2 = 361
(19/sqrt(2))^2 + y^2 = 361
361/2 + y^2 = 361
y^2 = 361/2
y = 19/sqrt(2)
We have maximum area at x = 19/sqrt(2) and y = 19/sqrt(2), or when x = y.