The velocity of the ball when it reaches the ground is equal to B. 68.6 m/s. This value was obtained from the formula Vf = Vi + at. Vf is the final velocity. Vi is the initial velocity. The acceleration is "a", while the time of travel is "t". The solution is:
<span>Vf = Vi + at
</span>Vf = 0 + (-9.8 m/s^2) (7 s)
Vf = -68.6 m/s
The negative sign denotes the direction of the ball.
Hi There!
Biotic factors are all the living things in an ecosystem, and abiotic factors are all of the non-living things in an ecosystem. So, they differ because they both mean opposite things.
Hope This Helps :)
Answer:
The speed of the ball was, v = 3 m/s
Explanation:
Given data,
The time period of the ball, t = 8 s
The distance the ball rolled, d = 24 m
The velocity of an object is defined as the object's displacement to the time taken. The formula for the velocity is,
v = d / t m/s
Substituting the given values in the above equation,
v = 24 / 8
= 3 m/s
Hence, the speed of the ball was, v = 3 m/s
Answer:
The law zero of thermodynamics.
Explanation:
The law zero of thermodynamics, which tells us that heat flows from a body at a higher temperature to another body with lower temperature, when the heat transfer is zero, it is said that the two bodies are in thermal equilibrium, their temperatures are equal
Answer:
W = 3/2 n (T₁- T₂)
Explanation:
Let's use the first law of thermodynamics
ΔE = Q + W
in this case the cylinder is insulated, so there is no heat transfer
ΔE = W
internal energy can be related to the change in temperature
ΔE = 3/2 n K ΔT
we substitute
3/2 n (T₂-T₁) = W
as the work is on the gas it is negative
W = 3/2 n (T₁- T₂)