Answer:

Explanation:
<u>Instant Acceleration</u>
The kinetic magnitudes are usually related as scalar or vector equations. By doing so, we are assuming the acceleration is constant over time. But when the acceleration is variable, the relations are in the form of calculus equations, specifically using derivatives and/or integrals.
Let f(t) be the distance traveled by an object as a function of the time t. The instant speed v(t) is defined as:

And the acceleration is

Or equivalently

The given height of a projectile is

Let's compute the speed

And the acceleration

It's a constant value regardless of the time t, thus

Answer:
GPE = 388.08 Joules.
Explanation:
Given the following data;
Mass = 0.550kg
Speed = 335 m/s
Height = 72 meters
We know that acceleration due to gravity, g is equal to 9.8 m/s²
To find the gravitational potential energy;
Gravitational potential energy (GPE) is an energy possessed by an object or body due to its position above the earth.
Mathematically, gravitational potential energy is given by the formula;

Where;
G.P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
Substituting into the formula, we have;

GPE = 388.08 Joules.
Answer:
ive once eaten octopus.. i dont recommend.. ANYWAY
i would rather shoot spaghetti out of my fingers ofc, that like free food and sneezing meatballs just sounds painful
Explanation:
The mechanical advantage is the factor by which
the machine multiplies the input force.
If the MA is 3 and the input force is 630N, then
the output force is
(3) x (630N) = 1,890N