Answer:
0.102 m
Explanation:
k = spring constant of the spring = 125 N/m
m = mass of the block attached to the spring = 650 g = 0.650 kg
x = maximum extension of the spring
h = height dropped by the block = x
Using conservation of energy
Spring potential energy gained = Gravitational potential energy lost
(0.5) k x² = mgh
(0.5) k x² = mgx
(0.5) (125) x = (0.650) (9.8)
x = 0.102 m
Since, the options are not given the question is incomplete the complete question is as follows.:
Which of the following is a major way in which oceans contribute to weather systems?
provide a diverse habitat for many organisms
experience changes in amounts of dissolved salts
store and transport the Sun's heat energy
reach depths that can be as much as 12000 meters
Answer: Store and transport the Sun's heat energy.
Explanation:
Oceanic currents are just like a conveyor belt. It helps in transportation of the warm water and the precipitation from the equator to the poles and the cold water in the poles towards the tropics. This way the oceans counteract the uneven distribution of the radiation of sun that reaches upto the surface earth. This will regulate the global climate.
Answer:
a)
& 
b) 
c) 
Explanation:
Given:
mass of the book, 
combined mass of the student and the skateboard, 
initial velocity of the book, 
angle of projection of the book from the horizontal, 
a)
velocity of the student before throwing the book:
Since the student is initially at rest and no net force acts on the student so it remains in rest according to the Newton's first law of motion.

where:
initial velocity of the student
velocity of the student after throwing the book:
Since the student applies a force on the book while throwing it and the student standing on the skate will an elastic collision like situation on throwing the book.

where:
final velcotiy of the student after throwing the book
b)



c)
Since there is no movement of the student in the vertical direction, so the total momentum transfer to the earth will be equal to the momentum of the book in vertical direction.



Answer:
E = 0.18 J
Explanation:
given,
Potential of the battery,V = 9 V
Charge on the circuit, Q = 20 m C
= 20 x 10⁻³ C
energy delivered in the circuit
E = Q V
E = 20 x 10⁻³ x 9
E = 180 x 10⁻³
E = 0.18 J
Energy delivered in the circuit is equal to E = 0.18 J