Answer:

Explanation:
It is given that,
Weight of the person on Earth, W = 818 N
Weight of a person is given by the following formula as :

g is the acceleration due to gravity on earth


m = 83.46 kg
The mass of an object is same everywhere. It does not depend on the location.
Let W' is the weight of the person on the surface of a nearby planet, W' = 5320 N
g' is the acceleration due to gravity on that planet. So,


So, the acceleration due to gravity on that planet is
. Hence, this is the required solution.
Answer:
vDP = 21.7454 m/s
θ = 200.3693°
Explanation:
Given
vDE = 7.5 m/s
vPE = 20.2 m/s
Required: vDP
Assume that
vDE to be in direction of - j
vPE to be in direction of i
According to relative motion concept the velocity vDP is given by
vDP = vDE - vPE (I)
Substitute in (I) to get that
vDP = - 7.5 j - 20.2 i
The magnitude of vDP is given by
vDP = √((- 7.5)²+(- 20.2)²) m/s = 21.7454 m/s
θ = Arctan (- 7.5/- 20.2) = 20.3693°
θ is in 3rd quadrant so add 180°
θ = 20.3693° + 180° = 200.3693°
Answer:
8.9 g/cm^3
Explanation:
density = mass/volume
volume = length * width * height
volume = (8.4 cm)(5.5 cm)(4.6 cm)
volume = 212.52 cm^3
mass = 1896 g
density = (1896 g)/(212.52 cm^3)
density = 8.9 g/cm^3
Answer: The person will still have a mass of 90kg on Mars
Explanation: The Truth is, the mass of a body remains constant from place to place. It is the weight which is equal to {mass of body * acceleration due to gravity{g}} that varies from place to place since it is dependent on {g}.
In this case the person will have a Weight of 90*9.8 = 882N on Earth.
{ "g" on Earth is 9.8m/s²}
And a Weight of 90*3.3 = 297N on Mars.
{ From the question "g" on Mars is {9.8m/s²}/3 which is 3.3m/s²}
From this analysis you notice that the WEIGHT of the person Varies but the MASS remained Constant at 90kg.
Answer:
V = 3.17 m/s
Explanation:
Given
Mass of the professor m = 85.0 kg
Angle of the ramp θ = 30.0°
Length travelled L = 2.50 m
Force applied F = 600 N
Initial Speed u = 2.00 m/s
Solution
Work = Change in kinetic energy
