Answer:
27.95[kW*min]
Explanation:
We must remember that the power can be determined by the product of the current by the voltage.

where:
P = power [W]
V = voltage [volt]
I = amperage [Amp]
Now replacing:
![P=110*8.47\\P=931.7[W]](https://tex.z-dn.net/?f=P%3D110%2A8.47%5C%5CP%3D931.7%5BW%5D)
Now the energy consumed can be obtained mediate the multiplication of the power by the amount of time in operation, we must obtain an amount in Kw per hour [kW-min]
![Energy = 931.7[kW]*30[days]*10[\frac{min}{1day} ]=279510[W*min]or 27.95[kW*min]](https://tex.z-dn.net/?f=Energy%20%3D%20931.7%5BkW%5D%2A30%5Bdays%5D%2A10%5B%5Cfrac%7Bmin%7D%7B1day%7D%20%5D%3D279510%5BW%2Amin%5Dor%2027.95%5BkW%2Amin%5D)
<span>When an object travels in a curved path, there must be a force acting toward the center of the circular trajectory. This force is called "centripetal force", and it cause an acceleration of the object, called "centripetal acceleration". The effect of this acceleration is that the velocity of the object changes in direction: however if the circular motion is uniform, the speed (=the magnitude of the velocity) does not change. In this case, the magnitude of the centripetal force is given by
</span>

<span>
where m is the mass of the object, v its velocity, and r the radius of the circular path.</span>
When silver is poured into the mould the it will solidify
In this process the phase of the Silver block will change from liquid to solid.
This phase change will lead to release in heat and this heat is known as latent heat of fusion.
The formula to find the latent heat of fusion is given as

here given that


now we can find the heat released


So it will release total heat of 55.5 kJ when it will solidify
The female reproductive system is designed to carry out several functions. It produces the female egg cells necessary for reproduction, called the ova or oocytes. The system is designed to transport the ova to the site of fertilization.
Answer:
The magnitude of F1 is

The magnitude of F2 is

And the direction of F2 is

Explanation:
<u>Net Force
</u>
Forces are represented as vectors since they have magnitude and direction. The diagram of forces is shown in the figure below.
The larger pull F1 is directed 21° west of north and is represented with the blue arrow. The other pull F2 is directed to an unspecified direction (red arrow). Since the resultant Ft (black arrow) is pointed North, the second force must be in the first quadrant. We must find out the magnitude and angle of this force.
Following the diagram, the sum of the vector components in the x-axis of F1 and F2 must be zero:

The sum of the vertical components of F1 and F2 must equal the total force Ft

Solving for
in the first equation






The magnitude of F1 is

The magnitude of F2 is

And the direction of F2 is
