Answer:
The answer is Friction.
Hope this helps :)
Please mark me brainliest :)
<span>You need to find the path difference. That is, how much further must sound waves from the more distant speaker travel than the close speaker, to reach the mike.
Use Pythagoras to find the distance of the further speaker: it is √(2.00²+4.50²)=4.924m so the path difference is 4.924-4.50=0.424m.
You will get constructive interference when this path difference is an integer number of wavelengths, because the waves will arrive at the mike in phase.
The speed of sound is 340m/s so the lowest frequency that will produce an antinode at the mike is the one that makes 0.424=λ
v=fλ so f=v/λ
f=340/0.424=801Hz.
The next one will be when 0.424m = 2λ => λ=0.212m
f=340/0.212=1602Hz
and so-on according to f=340n/0.424 where n is an integer.
For destructive interference the path difference must be (n-½)λ because that will make the waves arrive at the mike 180° out of phase.
f=340(n-½)/0.424</span>
Fenomeno de resonancia.
Espero que estoy te ayude :)
Vector is perpendicular to x axis or i component.
Hence i component is 0
j component is 63.5

Answer:
average value of the resulting force
Explanation:
The average module value of this resulting force is equivalent to 2.0. 10⁵ N.
The impulse of a force can be calculated by the product of the intensity of the force applied by the time interval in which it is applied -
I = F.Δt
Where,
F = Strength in Newtons
Δt = time interval in seconds
I = Impulse in N.s
The impulse of a force is equivalent to the variation of the amount of movement it causes in the body.
I = ΔQ
The amount of movement is a vector quantity that results from the multiplication of the mass of a body by its speed. Its direction and direction are the same as the velocity vector of the body.
Q = m-V
As the car goes to rest after the application of force, the amount of final movement of the car is equivalent to zero.
I = 0 - mV
F. Δt = - mV
F. 0,1 = - 1000. 20
F = - 20000/0,1
F = 200,000 N
F = 2,0. 10⁵ N