1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hichkok12 [17]
3 years ago
14

What is the are of the parallelogram(look at picture)

Mathematics
1 answer:
victus00 [196]3 years ago
3 0

Answer:

18 cm

Step-by-step explanation:

You might be interested in
Anyone wanna join my arsenal server we have giveaways (nitro and robuxs and etc) and tournaments. In tournaments the winner will
FromTheMoon [43]

Answer:

Sorry, dont have discord

Step-by-step explanation:

Thanks for the points, though, I could use them. Much appreciated. Have a good weekend

8 0
3 years ago
you spin the pointer on the spinner . find the probability that the pointer will stop on a number less then 5 . <3 PLEASE HEL
Dominik [7]
THere are 8 numbers in the spinner out of which 1, 2, 3, 4 (i.e. 4 numbers) are less than 5.
P(less than 5) = 4/8 = 1/2
4 0
3 years ago
An apple falls from a tree that is 21 feet tall. What is the height
Alexeev081 [22]

Answer:

Use the vertical motion model, h = -16t^2 + 21 , t=1 second

h = -16(1) ^2 + 21

h = 5 feet

Step-by-step explanation:

Just plug in the time with t to get your answer in height

4 0
3 years ago
Sin =9/15 . Find tan 0
ELEN [110]

Answer:

c. 9/12

Step by step explanation.

Given: sin = 9/15

and,

sin =  \frac{opp.}{hyp.}

tan =  \frac{opp.}{adj.}

thus, find adj. side

by using Pythagoras theorem

{c }^{2} =   {a}^{2}  +  {b}^{2}

then,

let adj. side be a^

{a}^{2}  =  {c}^{2}  -  {b }^{2} \\  {a}^{2}   =  {15 }^{2}  -  {9}^{2}  \\  {a}^{2}  = 144 \\ a = 12

thus,

adj. side is 12

then,

tan of the angle = 9/12

3 0
3 years ago
Directions: Calculate the area of a circle using 3.14x the radius
Leokris [45]

\qquad\qquad\huge\underline{{\sf Answer}}♨

As we know ~

Area of the circle is :

\qquad \sf  \dashrightarrow \:\pi {r}^{2}

And radius (r) = diameter (d) ÷ 2

[ radius of the circle = half the measure of diameter ]

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

<h3>Problem 1</h3>

\qquad \sf  \dashrightarrow \:r = d \div 2

\qquad \sf  \dashrightarrow \:r = 4.4\div 2

\qquad \sf  \dashrightarrow \:r = 2.2 \: mm

Now find the Area ~

\qquad \sf  \dashrightarrow \: \pi {r}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times  {(2.2)}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times  {4.84}^{}

\qquad \sf  \dashrightarrow \:area  \approx 15.2 \:  \: mm {}^{2}

・ .━━━━━━━†━━━━━━━━━.・

<h3>problem 2</h3>

\qquad \sf  \dashrightarrow \:r = d \div 2

\qquad \sf  \dashrightarrow \:r = 3.7 \div 2

\qquad \sf  \dashrightarrow \:r = 1.85 \:  \: cm

Bow, calculate the Area ~

\qquad \sf  \dashrightarrow \: \pi {r}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times (1.85) {}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times 3.4225 {}^{}

\qquad \sf  \dashrightarrow \:area  \approx 10.75 \:  \: cm {}^{2}

・ .━━━━━━━†━━━━━━━━━.・

<h3>Problem 3 </h3>

\qquad \sf  \dashrightarrow \:\pi {r}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times (8.3) {}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times 68.89

\qquad \sf  \dashrightarrow \:area \approx216.31 \:  \: cm {}^{2}

・ .━━━━━━━†━━━━━━━━━.・

<h3>Problem 4</h3>

\qquad \sf  \dashrightarrow \:r = d \div 2

\qquad \sf  \dashrightarrow \:r = 5.8 \div 2

\qquad \sf  \dashrightarrow \:r = 2.9 \:  \: yd

now, let's calculate area ~

\qquad \sf  \dashrightarrow \:3.14 \times  {(2.9)}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times  8.41

\qquad \sf  \dashrightarrow \:area  \approx26.41 \:  \: yd {}^{2}

・ .━━━━━━━†━━━━━━━━━.・

<h3>problem 5</h3>

\qquad \sf  \dashrightarrow \:r = d \div 2

\qquad \sf  \dashrightarrow \:r = 1 \div 2

\qquad \sf  \dashrightarrow \:r = 0.5 \:  \: yd

Now, let's calculate area ~

\qquad \sf  \dashrightarrow \:\pi {r}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times (0.5) {}^{2}

\qquad \sf  \dashrightarrow \:3.14  \times 0.25

\qquad \sf  \dashrightarrow \:area \approx0.785 \:  \: yd {}^{2}

・ .━━━━━━━†━━━━━━━━━.・

<h3>problem 6</h3>

\qquad \sf  \dashrightarrow \:\pi {r}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times  {(8)}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times 64

\qquad \sf  \dashrightarrow \:area = 200.96 \:  \: yd {}^{2}

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

8 0
2 years ago
Other questions:
  • Plz help me and have work shown
    11·1 answer
  • HELP!<br><br> Is a^2 + b^2 = (a+b)^2
    12·1 answer
  • The table shows the monthly rainfall at a measuring station. What is the mean monthly rainfall? Round your answer to the nearest
    8·2 answers
  • Which of the following most closely rounds to the number 1?
    12·2 answers
  • <img src="https://tex.z-dn.net/?f=%20%7B3%7D%5E%7B4%7D%20%20%5Ctimes%20%20%7B3%7D%5E%7B5%20%7D%20%20%2B2%285%20-%202%20%5Ctimes%
    12·1 answer
  • BRAINLIEST!!
    10·1 answer
  • A regular pentagon and an equilateral triangle have the same perimeter...........
    7·1 answer
  • Find the sales tax. Then find the total cost of the item.
    9·2 answers
  • Simplify the expression.
    9·1 answer
  • 100 POINTS!! Identify the sample space of the probability experiment: answering a multiple choice question with A, B, C, and D a
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!