Hmm, I'd say it's the first option.
Let's make another angle y
Where y= 51° (corresponding angles )
and x+y= 180°. ( linear pair )
x+51°= 180° (y=51°)
x=180°-51°
x= 129°
<u>So the value of x is 129</u>°
Hope you got your answer !
Answer: parallel lines
Step-by-step explanation:
Answer:
dy/dx = (x^2 - 3)^sin x [2x sin x/ (x^2 - 3) + cos x ln(x^2 - 3)]
Step-by-step explanation:
y = (x^2 - 3)^sinx
ln y = ln (x^2 - 3)^sinx
ln y = sin x * ln (x^2 - 3)
1/y * dy/dx = sin x * {1 / (x^2 - 3)} * 2x + ln(x^2 - 3) * cos x
1/y dy/dx = 2x sin x/ (x^2 - 3) + cos x ln(x^2 - 3)
dy/dx = [2x sin x/ (x^2 - 3) + cos x ln(x^2 - 3)] * y
dy/dx = (x^2 - 3)^sin x [2x sin x/ (x^2 - 3) + cos x ln(x^2 - 3)]