C6H12O6 + 6 O2 --> 6 CO2 + 6 H2O
Answer:
The correct answer is Sugar has a greater solubility than sand.
Sugar will easily dissolve in water because it has a lower density than sand, therefore it has a greater solubility.
The heat that creates this temperature change coming from change in the internal energy of the system as per as first law of thermodynamics.
<h3>What is Boyle's law ?</h3>
A law stating that the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature.
As we know, Boyle's law only works when the gas is kept at a constant temperature
Here,
When volume of gases decreased, it means work done has occurred on the system, so the work done is used for raising internal energy of the gas and the other is released as the thermal energy.
So,
According to 1st law of thermodynamics,
we know Q = ΔU + W i.e, change in internal energy and work done. So this is a reason. Changing temperature occurs.
Learn more about Internal enrgy here ;
brainly.com/question/11278589
#SPJ1
Answer: Plastic water bottles
Explanation:
If you use disposable water bottles, here are some important concerns you should know about how they’re made as well as the problems they cause for the planet, your health, and your wallet.
Answer : The correct expression for equilibrium constant will be:
![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)
Explanation :
Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.
The equilibrium expression for the reaction is determined by multiplying the concentrations of products and divided by the concentrations of the reactants and each concentration is raised to the power that is equal to the coefficient in the balanced reaction.
As we know that the concentrations of pure solids and liquids are constant that is they do not change. Thus, they are not included in the equilibrium expression.
The given equilibrium reaction is,

The expression of
will be,
![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)
Therefore, the correct expression for equilibrium constant will be, ![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)