Answer:
SO2
Explanation:
Dipole-Dipole exist between parmanent dipoles in a molecule. THis means that molecule must have a parmanent dipole moment in it.
Example - HCl
Hydrogen bonding is an attraction between lone pair of an electronegative element and H atom of same or different molecule. H must be covalantly attached to either F, N or O.
Example - H2O
Among the molecules given in the list only SO2 and H2O exihibits parmanent moment. As BCl3 , CBr4 and H2 are symmetric compounds.
Since, SO2 cannot exihibit H- bonding only dipole-dipole forces as its strongest intermolecular force.
<h3>Answer:</h3>
36 moles of Hydrogen
<h3>Solution:</h3>
The molecular formula of Glucose is,
C₆H₁₂O₆
As clear from molecular formula, each mole of Glucose contains 12 moles of Hydrogen atoms.
Therefore,
1 mole of C₆H₁₂O₆ contains = 12 moles of Hydrogen
So,
3.0 moles of C₆H₁₂O₆ will contain = X moles of Hydrogen
Solving for X,
X = (3.0 mol × 12 mol) ÷ 1 mol
X = 36 moles of Hydrogen
Answer:
Me India is located in Asia and its capital name is New Delhi.
Answer:
(a)The molar mass of the gene fragment is 18220.071g/mol = 18.22 kg/mol
(b)The freezing point for the aqueous solution is
C
Explanation:
The osmotic pressure (π) is given by the following equation:

= Concentration of solution
R = universal gas constant = 62.364 
T = temperature
Weight of solute = w = 10.0 mg
Let the molecular weight of the solute be m g/mol.
Concentration = 

m = 18220.071g/mol
Therefore, the molar mass of the gene fragment is 18220.071g/mol = 18.22 kg/mol

m is the molality of the solution.
m =
mol/kg

=
C
The freezing point for the aqueous solution is
C