1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
artcher [175]
3 years ago
14

In the diagram, ΔGHJ ≅ ΔSTU.

Mathematics
2 answers:
valina [46]3 years ago
6 0

Answer:

m∠J = 67°

m∠T = 67°

m∠G =46°

ST = 5cm

HJ = 3.7cm

Step-by-step explanation:

Given

  • ΔGHJ ≅ ΔSTU
  • GH = 5 cm = GJ
  • m∠GHJ = 67°

=> m∠J = 67°  ( that is the property of isosceles triangle because GH  = GJ

=>  m∠G = 180° - m∠H - m∠J =  180° - 67° - 67° = 46°

  • Because ΔGHJ ≅ ΔSTU

=> GH  = GJ = ST =SU

=> ST = 5 cm

  • Because ΔGHJ ≅ ΔSTU  and GH  = GJ = ST =SU

=> TU = HJ = 3.7 cm

=> m∠T = m∠H = 67°

So:

m∠J = 67°

m∠T = 67°

m∠G =46°

ST = 5cm

HJ = 3.7cm

topjm [15]3 years ago
6 0

Answer:

67

67

46

5

3.7

Step-by-step explanation:

You might be interested in
7 plus -2 times 3 square
ruslelena [56]
If 3 squared is 9 then 9 times -2 is -18 plus 7 is -11
6 0
3 years ago
(6x-5y+4)dy+(y-2x-1)dx=0​
Len [333]

(6<em>x</em> - 5<em>y</em> + 4) d<em>y</em> + (<em>y</em> - 2<em>x</em> - 1) d<em>x</em> = 0

(6<em>x</em> - 5<em>y</em> + 4) d<em>y</em> = (2<em>x</em> - <em>y</em> + 1) d<em>x</em>

d<em>y</em>/d<em>x</em> = (2<em>x</em> - <em>y</em> + 1) / (6<em>x</em> - 5<em>y</em> + 4)

Let <em>X</em> = <em>x</em> - <em>a</em> and <em>Y</em> = <em>y</em> - <em>b</em>. We want to find constants <em>a</em> and <em>b</em> such that

d<em>Y</em>/d<em>X</em> = (a rational function)

where the numerator and denominator on the right side are free of constant terms. Substituting <em>x</em> and <em>y</em> in the equation, we have

d<em>Y</em>/d<em>X</em> = (2 (<em>X</em> + <em>a</em>) - (<em>Y</em> + <em>b</em>) + 1) / (6 (<em>X</em> + <em>a</em>) - 5 (<em>Y</em> + <em>b</em>) + 4)

d<em>Y</em>/d<em>X</em> = (2<em>X</em> - <em>Y</em> + 2<em>a</em> - <em>b</em> + 1) / (6<em>X</em> - 5<em>Y</em> + 6<em>a</em> - 5<em>b</em> + 4)

Then we solve for <em>a</em> and <em>b</em> in the system,

2<em>a</em> - <em>b</em> + 1 = 0

6<em>a</em> - 5<em>b</em> + 4 = 0

==>   <em>a</em> = -1/4 and <em>b</em> = 1/2

With these constants, the equation reduces to

d<em>Y</em>/d<em>X</em> = (2<em>X</em> - <em>Y</em>) / (6<em>X</em> - 5<em>Y</em>)

Now substitute <em>Y</em> = <em>VX</em> and d<em>Y</em>/d<em>X</em> = <em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> :

<em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> = (2<em>X</em> - <em>VX</em>) / (6<em>X</em> - 5<em>VX</em>)

The equation becomes separable after some simplification:

<em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> = (2 - <em>V</em>) / (6 - 5<em>V</em>)

<em>X</em> d<em>V</em>/d<em>X</em> = (2 - <em>V</em>) / (6 - 5<em>V</em>) - <em>V</em>

<em>X</em> d<em>V</em>/d<em>X</em> = (2 - <em>V</em> - (6 - 5<em>V</em>)) / (6 - 5<em>V</em>)

<em>X</em> d<em>V</em>/d<em>X</em> = (4<em>V</em> - 4) / (6 - 5<em>V</em>)

- (5<em>V</em> - 6) / (4<em>V</em> - 4) d<em>V</em> = 1/<em>X</em> d<em>X</em>

Integrate both sides:

-5/4 <em>V</em> + 1/4 ln|4<em>V</em> - 4| = ln|<em>X</em>| + <em>C</em>

Extract a constant from the logarithm on the left:

-5/4 <em>V</em> + 1/4 (ln(4) + ln|<em>V</em> - 1|) = ln|<em>X</em>| + <em>C</em>

-5/4 <em>V</em> + 1/4 ln|<em>V</em> - 1| = ln|<em>X</em>| + <em>C</em>

-5<em>V</em> + ln|<em>V</em> - 1| = 4 ln|<em>X</em>| + <em>C</em>

Get this back in terms of <em>Y</em> :

-5<em>Y/X</em> + ln|<em>Y/X</em> - 1| = 4 ln|<em>X</em>| + <em>C</em>

Now get the solution in terms of <em>y</em> and <em>x</em> :

-5 (<em>y</em> - 1/2)/(<em>x</em> + 1/4) + ln|(<em>y</em> - 1/2)/(<em>x</em> + 1/4) - 1| = 4 ln|<em>x</em> + 1/4| + <em>C</em>

<em />

With some manipulation of constants and logarithms, and a bit of algebra, we can rewrite this solution as

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|(4<em>y</em> - 4<em>x</em> - 3)/(4<em>x</em> + 1)| = 4 ln|<em>x</em> + 1/4| + 4 ln(4) + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|(4<em>y</em> - 4<em>x</em> - 3)/(4<em>x</em> + 1)| = 4 ln|4<em>x</em> + 1| + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|4<em>y</em> - 4<em>x</em> - 3| - ln|4<em>x</em> + 1| = 4 ln|4<em>x</em> + 1| + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|4<em>y</em> - 4<em>x</em> - 3| = 5 ln|4<em>x</em> + 1| + <em>C</em>

8 0
3 years ago
A satellite is in an approximately circular orbit 36,000 kilometers from Earth’s surface. The radius of Earth is about 6400 kilo
lisov135 [29]

The answer is 266,407.507 km

5 0
3 years ago
What is 134,221,537 + 80,991 ,199 rounded to the nearest ten - thousand
DedPeter [7]
<span>215,212,736

Round by 10,000 is 215,210,000</span>
4 0
3 years ago
Read 2 more answers
8x-5y=21 simultaneous linear equation<br>2x+9y=-5
olya-2409 [2.1K]

Answer:

x=2 and y=-1

Step-by-step explanation:

If two equations are given, we can solve one of the equation in terms of single variable and put it in the other equation which will further give the value of x and y.

For the given equations:

8x-5y=21              Equation:1

2x+9y=-5             Equation:2

Solving equation multiply equation 2 with 4 on both the sides

8x+36y=-20        Equation 3

Subtracting Equation:3 from Equation:1

8x-5y-(8x+36y)=21-(-20)\\8x-5y-8x-36y=21+20\\-41y=41\\y=-1

Putting value of 'y' in Equation:2 which will give the value of x

2x+9y=-5\\2x+9(-1)=-5\\2x-9=-5\\2x=4\\x=2

8 0
3 years ago
Other questions:
  • The student body of 85 students wants to
    6·1 answer
  • I want to know the answer to this problem?
    5·1 answer
  • What is the volume of the largest box that can be made from a square piece of cardboard with side lengths of 24 inches by cuttin
    13·2 answers
  • In a certain triangle, one angle has a measure of 30° and another angle has a measure of 120°. If the triangle is isosceles, the
    13·1 answer
  • Evaluate 13-0.75w+8x13−0.75w+8x13, minus, 0, point, 75, w, plus, 8, x when w=12w=12w, equals, 12 and x=\dfrac12x= 2 1 ​
    8·1 answer
  • Joséphine noticed that out of 10 e-mails she
    10·2 answers
  • Examine the following table. Determine whether the rate of change is constant or variable. If it is constant, state the rate of
    12·1 answer
  • Identify percent of change. 20 is increased to 22.
    11·2 answers
  • Question is in the image:
    8·2 answers
  • Solve for b₂, in terms of the area of a trapezoid, A, the height, h, and b₁: A =1/2 (b₁ + b₂)h
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!