Answer:
A. The larger the sample size the better.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean
and standard deviation 
In this question:
We have to look at the standard error, which is:

This means that an increase in the sample size reduces the standard error, and thus, the larger the sample size the better, and the correct answer is given by option a.
Answer:
C
Step-by-step explanation:
Factor: -7x^2 -5x+18
Factor -1 out of 7x^2 -5x +18:
−(7x^2+5x−18)
Factor.
1. 18 is negative, so a negative number multiplied by a postive number.
2. You can't factor 7, so 7x times x.
(7x−9)(x+2)
<span>You can probably just work it out.
You need non-negative integer solutions to p+5n+10d+25q = 82.
If p = leftovers, then you simply need 5n + 10d + 25q ≤ 80.
So this is the same as n + 2d + 5q ≤ 16
So now you simply have to "crank out" the cases.
Case q=0 [ n + 2d ≤ 16 ]
Case (q=0,d=0) → n = 0 through 16 [17 possibilities]
Case (q=0,d=1) → n = 0 through 14 [15 possibilities]
...
Case (q=0,d=7) → n = 0 through 2 [3 possibilities]
Case (q=0,d=8) → n = 0 [1 possibility]
Total from q=0 case: 1 + 3 + ... + 15 + 17 = 81
Case q=1 [ n + 2d ≤ 11 ]
Case (q=1,d=0) → n = 0 through 11 [12]
Case (q=1,d=1) → n = 0 through 9 [10]
...
Case (q=1,d=5) → n = 0 through 1 [2]
Total from q=1 case: 2 + 4 + ... + 10 + 12 = 42
Case q=2 [ n + 2 ≤ 6 ]
Case (q=2,d=0) → n = 0 through 6 [7]
Case (q=2,d=1) → n = 0 through 4 [5]
Case (q=2,d=2) → n = 0 through 2 [3]
Case (q=2,d=3) → n = 0 [1]
Total from case q=2: 1 + 3 + 5 + 7 = 16
Case q=3 [ n + 2d ≤ 1 ]
Here d must be 0, so there is only the case:
Case (q=3,d=0) → n = 0 through 1 [2]
So the case q=3 only has 2.
Grand total: 2 + 16 + 42 + 81 = 141 </span>
ANSWER
The x-coordinate of the solution to the system of equations is 1.
EXPLANATION
The given equations are:
y = -x - 2
and
y = 2x - 5.
We want to find the x-coordinate of the solution to the system of equations.
We equate the two equations to obtain an equation in x.
This implies that,
2x-5=-x-2
Group similar terms to obtain:
2x+x=-2+5
Simplify
3x=3
Divide both sides by 3.
x=1
The x-coordinate of the solution to the system of equations is 1
Answer:
Where’s the graph?
Step-by-step explanation: