Answer:
Dimensions: 0.4 by 3.2 by 1.2
Step-by-step explanation:
I'm assuming here that we are cutting out squares out of each of the metal's corners:
Let x = the length of each cut-out square,
Each base (of the desired net square folded) is 4-2x, and 2-2x respectively,
Volume = x(4-2x)(2-2x)
= 4x^3 - 12x + 8x
Now we take the derivative:
![\frac{d}{dx}\left[4x^3-12x^2+8x\right]\\\\= \frac{d}{dx}\left(4x^3\right)-\frac{d}{dx}\left(12x^2\right)+\frac{d}{dx}\left(8x\right)\\\\= 12x^2-24x+8](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%5B4x%5E3-12x%5E2%2B8x%5Cright%5D%5C%5C%5C%5C%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%284x%5E3%5Cright%29-%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%2812x%5E2%5Cright%29%2B%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%288x%5Cright%29%5C%5C%5C%5C%3D%2012x%5E2-24x%2B8)
We equate to 0 (0 for max volume), and solve using the quadratic formula:

So we approximate the side lengths to be 1.6 and 0.4 respectively. But when we plug in 1.6 for x, we get the volume as negative. Therefore x has to be 0.4.
Side lengths: 0.4, 4-2(0.4) => 3.2, 2-2(0.4) => 1.2