Answer:
<h2>The answer is 58 m</h2>
Step-by-step explanation:
Perimeter of a rectangle = 2l + 2w
where
l is the length
w is the width
From the question
length = 17 m
width = 12 m
Substitute the values into the above formula and solve for the perimeter
We have
Perimeter = 2(17) + 2(12)
= 34 + 24
We have the final answer as
<h3>58 m</h3>
Hope this helps you
Answer:
Step-by-step explanation:
In math, every digit in a number has a place value. Place value can be defined as the value represented by a digit in a number on the basis of its position in the number. ... 8 is in ones place and its place value is 8. Understanding the place value of digits in numbers helps in writing numbers in their expanded form.
<u>Given </u><u>:</u><u>-</u>
- The slope of the line through points (3,y) and (4,10) is 7 .
<u>To </u><u>Find</u><u> </u><u>:</u><u>-</u>
<u>Solution</u><u> </u><u>:</u><u>-</u>
As we know that the slope of the line is difference of ordinate divided by the difference of absicca as ,
m = y -10 / 3 - 4
7 (-1) = y -10
-7 = y -10
y = 10 -7
y = 3
<u>Hence</u><u> the</u><u> required</u><u> answer</u><u> is</u><u> </u><u>3.</u>
Usando el teorema de altura El teorema de altura relaciona la altura (h) de un triángulo rectángulo (ver figura) y los catetos de dos triángulos que son semejantes al anterior ABC, al trazar la altura (h) sobre la hipotenusa. De manera que e<span>n todo </span>triángulo rectángulo, la altura (h<span>) relativa a la </span>hipotenusa<span> es la </span>media geométrica<span> de las dos proyecciones de los </span>catetos<span> sobre la </span>hipotenusa<span> (</span>n<span> y </span>m<span>). Es decir, se cumple que:
</span>

Dado que el problema establece <span>construir un segmento cuya longitud sea media proporcional entre dos segmentos de 4 y 9 cm, entonces, digamos que n = 4cm y m = 9cm tenmos que:
</span>

De donde:
¿Cómo se podria construir si los segmentos son de a cm y b cm?
Si los segmentos son de a y b cm entonces a y b son parámetros que pueden tomar cualquier valor positivo siempre que se cumpla que:

We know that the area of a circle in terms of π will be πr². However the area with respect to the diameter will be a different story. The first step here is to find a function relating the area and diameter of any circle --- ( 1 )
For any circle the diameter is 2 times the radius,
d = 2r
Therefore r = d / 2, which gives us the following formula through substitution.
A = π(d / 2)² = πd² / 4
<u>Hence the area of a circle as the function of it's diameter is A = πd² / 4. You can also say f(d) = πd² / 4.</u>
Now we can substitute " d " as 4, solving for the area ( A ) or f(4) --- ( 2 )
f(4) = π(4)² / 4 = 16π / 4 = 4π - <u>This makes the area of circle present with a diameter of 4 inches, 4π.</u>