<h3><u>Answer;</u></h3>
<u>= 128.772 g of water</u>
2C6H14 + 13 O2 → 6CO2 + 14 H2O
<h3><u>Explanation</u>;</h3>
1 mole of Hexane contains 86 g
Therefore;
87.91 grams of hexane will contain
= 87.91 g/86 g
= 1.022 moles
The balanced reaction for the combustion of Hexane is given by
2C6H14 + 13 O2 → 6CO2 + 14 H2O
Therefore; the mole ratio of C6H14 :H2O is
= 2 : 14
= 1: 7
therefore moles of water from 1.022 moles of Hexane will be;
= 1.022 ×7
= 7.154 moles
Mass of water will be;
= 7.154 moles× 18
<u>= 128.772 g of water</u>
To know the electrostatic force between two charges or between two ions, you can use the Coulomb's Law. The equation is F = k*q1*q1/r^2, where F is the electrostatic force, q1 and q2 are the charger for Na and Cl, and r is the distance between the centers of both atoms. In literature, the distance is 0.5 nm or 0.5 x 10^-9 meters. The charge for Na+ and Cl- is the same magnitude but different in sign. Since Na+ is a cation, its charge is +1.603x10^-19 C (the charge of an electron). For Cl- being an anion, its charge is -1.603x10^-19 C. The constant k is an empirical value equal to 9x10^9. Using the formula:
F = (9x10^9)(+1.603x10^-19)(-1.603x10^-19)/(0.5 x 10^-9)^2
F = -9.25 x 10^-10 Newtons
The negative denotes that the net force is more towards the Cl- ion.
Answer:
Examples of storage polysaccharides - <u>starch and glycogen</u> and structural polysaccharides - <u>cellulose and chitin</u>
Explanation:
Polysaccharides are the complex carbohydrate polymers, composed of monosaccharide units that are joined together by glycosidic bond.
In other words, polysaccharides are the carbohydrate molecules that give monosaccharides or oligosaccharides on hydrolysis.
The examples of storage polysaccharides are starch and glycogen. The examples of structural polysaccharides are cellulose and chitin.
Explanation:
The balanced equation of the reaction is given as;
Mg(OH)2 (s) + 2 HBr (aq) → MgBr2 (aq) + 2 H2O (l)
1. How many grams of MgBr2 will be produced from 18.3 grams of HBr?
From the reaction;
2 mol of HBr produces 1 mol of MgBr2
Converting to masses using;
Mass = Number of moles * Molar mass
Molar mass of HBr = 80.91 g/mol
Molar mass of MgBr2 = 184.113 g/mol
This means;
(2 * 80.91 = 161.82g) of HBr produces (1 * 184.113 = 184.113g) MgBr2
18.3g would produce x
161.82 = 184.113
18.3 = x
x = (184.113 * 18.3 ) / 161.82 = 20.8 g
2. How many moles of H2O will be produced from 18.3 grams of HBr?
Converting the mass to mol;
Number of moles = Mass / Molar mass = 18.3 / 80.91 = 0.226 mol
From the reaction;
2 mol of HBr produces 2 mol of H2O
0.226 mol would produce x
2 =2
0.226 = x
x = 0.226 * 2 / 2 = 0.226 mol
3. How many grams of Mg(OH)2 are needed to completely react with 18.3 grams of HBr?
From the reaction;
2 mol of HBr reacts with 1 mol of Mg(OH)2
18.3g of HBr = 0.226 mol
2 = 1
0.226 = x
x = 0.226 * 1 /2
x = 0.113 mol