The unit 'mW' means milliwatts. It is a unit of work. There are 1,000 milliwatts in a 1 Watt of work. In 4 hours, there are 14,400 seconds.
Work= Energy/time
17 mW * 1 W/1000 mW = Energy/(14,400 seconds)
Solving for energy,
Energy = 244.8 J
Energy/photon = 244.8 J/(6.04×10²⁰) = 4.053×10⁻¹⁹ J/photon
Using the Planck's equation:
E = hc/λ
where h = 6.626×10⁻³⁴ m²·kg/s, c = 3,00,000,000 m/s and λ is the wavelength
4.053×10⁻¹⁹ J/photon = (6.626×10⁻³⁴ m²·kg/s)(3,00,000,000 m/s)/λ
λ = 4.9×10⁻⁷ m or 49 micrometers
Answer:
0.0498 mol
Explanation:
Number of moles = concentration in mol/L × volume in L
Concentration = 1 M = 1 mol/L
Volume = 49.8 mL = 49.8/1000 = 0.0498 L
Number of moles = 1×0.0498 = 0.0498 mol
I think the substance that will heat up faster would be the silver metal since it has a higher heat capacity. Heat capacity is the amount of heat needed to raise the temperature of the system into one degree. Heat capacity and heat energy is directly related so higher value of heat capacity would lead to higher heat energy.
Answer: 1123000 Joules of energy are required to vaporize 13.1 kg of lead at its normal boiling point
Explanation:
Latent heat of vaporization is the amount of heat required to convert 1 mole of liquid to gas at atmospheric pressure.
Amount of heat required to vaporize 1 mole of lead = 177.7 kJ
Molar mass of lead = 207.2 g
Mass of lead given = 1.31 kg = 1310 g (1kg=1000g)
Heat required to vaporize 207.2 of lead = 177.7 kJ
Thus Heat required to vaporize 1310 g of lead =
Thus 1123000 Joules of energy are required to vaporize 13.1 kg of lead at its normal boiling point