Answer:
The energy of a hydrogen atom's electron is determined by which principal quantum number n value corresponds to the energy state the electron occupies. where n=1,2,3,... is the quantum number that quantizes the energy levels. That is, they are discrete energy values proportional to 1n2 .
Explanation:
I Believe this is the right answer:
Get a periodic table of elements. ...
Find your element on the periodic table. ...
Locate the element's atomic number. ...
Determine the number of electrons. ...
Look for the atomic mass of the element. ...
Subtract the atomic number from the atomic mass.
Hoped this helped!
Answer : The energy released by an electron in a mercury atom to produce a photon of this light must be, 
Explanation : Given,
Wavelength = 
conversion used : 
Formula used :

As, 
So, 
where,
= frequency
h = Planck's constant = 
= wavelength = 
c = speed of light = 
Now put all the given values in the above formula, we get:


Therefore, the energy released by an electron in a mercury atom to produce a photon of this light must be, 
<em>Same group element have same</em><em><u> Valence electron</u></em><em> and behave similarly in </em><em><u>Chemistry.</u></em>
<u>Explanation:</u>
For example. First group elements Alkali metals:- H, Li, K, Rb, Cs, Fr
Valance electron will take part in forming a bond with other elements and compound will form. All the above-given elements (H-Fr) have valence electron 1 in outer most 'S' shell. All have electronic configuration S1
Behavior: Since valence electrons are the same so the behavior of all the elements in this group is the same. All are metal (from Li-Fr, except Hydrogen), all are very reactive, does not found in native state in the environment, and all react with water.