To solve this problem we will apply the concepts related to the intensity included as the power transferred per unit area, where the area is the perpendicular plane in the direction of energy propagation.
Since the propagation occurs in an area of spherical figure we will have to


Replacing with the given power of the Bulb of 100W and the radius of 2.5m we have that


The relation between intensity I and 

Here,
= Permeability constant
c = Speed of light
Rearranging for the Maximum Energy and substituting we have then,




Finally the maximum magnetic field is given as the change in the Energy per light speed, that is,



Therefore the maximum value of the magnetic field is 
Electromagnet is in form of solenoid
and the magnetic field due to solenoid is given as

here
i = current in the loop
so when we increase the current in electromagnet the magnetic field of the solenoid will increase
this will increase the strength of the electromagnet
so the answer would be
<em>INCREASE</em>
I’m not sure if its correct but I think it’s focal Ray point
For concave mirrors, some generalizations can be made to simplify ray construction. They are: An incident ray traveling parallel to the principal axis will reflect and pass through the focal point. An incident ray traveling through the focal point will reflect and travel parallel to the principal axis.
Ice is only thing which is mightier than steel because it can breaks things which are made up of steels like ships but in the sunlight ice melts away it means it cowards away.
The initial speed of car A is 15.18 m/s.
Momentum is defined as mass in motion. If there are two objects (the two objects in motion or only one object in motion and the other in stationary) that collide and no other forces work in the system, the law of momentum conservation applies in the system.
p=p'
pa+pb = pa'+pb'
(ma×va) + (mb×vb) = (ma×va') + (mb×vb')
- ma = mass of object A (kg) = 1,783 kg
- mb = mass of object B (kg) = 1,600 kg
- va = speed of object A before collides (m/s)
- va' = speed of object A after collides (m/s) = 8 m/s
- vb = speed of object B before collides (m/s) = 0 m/s
- vb' = speed of object B after collides (m/s) = 8 m/s
- p = momentum before collision (Ns)
- p' = momentum after collision (Ns)
(ma×va) + (mb×vb) = (ma×va') + (mb×vb')
(1,783×va) + (1,600×0) = (1,783×8) + (1,600×8)
(1,783×va) + 0 = 14,264+12,800
(1,783×va) = 27,064

va = 15.18 m/s
Learn more about The law of momentum conservation here: brainly.com/question/7538238
#SPJ4