After the ball leaves the thrower's hand, the only force on it is
due to gravity. There's no horizontal force acting on it at all. (C)
Answer: when a circuit is completed (it allows the flow of electrons which causes the light bulb to produce light).
Explanation:
A circuit is described as an electrical setup that is consists of a light bulb, a switch, a wire, a battery which is arranged to allow the flow of electric current. The major components of the electrical circuit includes:
--> The BATTERY which is the source of voltage to the circuit,
--> the WIRE which is the conductive path,
--> the LIGHT BULB which is the load that needs electrical power to operate and
--> the SWITCH which is the controller.
When a circuit is COMPLETED when electrons can flow from one end of a battery all the way around, through the wires, to the other end of the battery. Along its way, it will carry electrons to electrical objects that are connected to it like the light bulb and make it to produce light.
There are different types of electric circuit which are designed to create a conductive path of current or electricity. They include:
--> closed circuit
--> open circuit
--> short circuit
--> parallel circuit
--> series circuit.
Answer:
The answer is B
Explanation:
The line spectrum shows distinct light different energies and wavelengths
Answer:
True.
Explanation:
A diode, which allows current to flow in one direction only, consists of two types of semiconductors joined together.
A semiconductor can be defined as a crystalline solid substance that has its conductivity lying between that of a metal and an insulator, due to the effects of temperature or an addition of an impurity. Semiconductors are classified into two main categories;
1. Extrinsic semiconductor.
2. Intrinsic semiconductor.
An intrinsic semiconductor is a crystalline solid substance that is in its purest form and having no impurities added to it. Examples of intrinsic semiconductor are Germanium and Silicon.
In an intrinsic semiconductor, the number of free electrons is equal to the number of holes. Also, in an intrinsic semiconductor the number of holes and free electrons is directly proportional to the temperature; as the temperature increases, the number of holes and free electrons increases and vice-versa.
In an intrinsic semiconductor, each free electrons (valence electrons) produces a covalent bond.
Answer:
I = 215.76 A
Explanation:
The direction of magnetic field produced by conductor 1 on the location of conductor 2 is towards left. Based on Right Hand Rule -1 and taking figure 21.3 as reference, the direction of force Fm due to magnetic field produced at C_2 is shown above. The force Fm balances the weight of conductor 2.
Fm = u_o*I^2*L/2*π*d
where I is the current in each rod, d = 0.0082 m is the distance 27rId
between each, L = 0.85 m is the length of each rod.
Fm = 4π*10^-7*I^2*1.1/2*π*0.0083
The mass of each rod is m = 0.0276 kg
F_m = mg
4π*10^-7*I^2*1.1/2*π*0.0083=0.0276*9.8
I = 215.76 A
note:
mathematical calculation maybe wrong or having little bit error but the method is perfectly fine