1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitriy789 [7]
3 years ago
13

15 POINTS

Mathematics
1 answer:
RoseWind [281]3 years ago
3 0

Answer:

that will be .... x=2,y=1 so that will be (2,1)

You might be interested in
Find the roots of the following function:<br><br> y = x2 − 7x − 30
DIA [1.3K]

Answer:

x = 3, −10

Step-by-step explanation:

The roots (zeros) are the x values where the graph intersects the x-axis. To find the roots (zeros), replace y with 0 and solve for x.

6 0
3 years ago
Can someone help me?<br>I just downloaded this App, I need to submit this assignment at in 1 hour
Sati [7]
Use Pythagorean identity to find x value and solve using formulas

5 0
3 years ago
Find the limit
Lana71 [14]

Step-by-step explanation:

<h3>Appropriate Question :-</h3>

Find the limit

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

On substituting directly x = 1, we get,

\rm \: = \: \sf \dfrac{1-2}{1 - 1}-\dfrac{1}{1 - 3 + 2}

\rm \: = \sf \: \: - \infty \: - \: \infty

which is indeterminant form.

Consider again,

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

can be rewritten as

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 3x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 2x - x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( x(x - 2) - 1(x - 2))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ {(x - 2)}^{2} - 1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 2 - 1)(x - 2 + 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)(x - 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)}{x(x - 2)}\right]

\rm \: = \: \sf \: \dfrac{1 - 3}{1 \times (1 - 2)}

\rm \: = \: \sf \: \dfrac{ - 2}{ - 1}

\rm \: = \: \sf \boxed{2}

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right] = 2 \: }}

\rule{190pt}{2pt}

7 0
3 years ago
Read 2 more answers
Which statement best describes why the sale price is a function of the original price?
stich3 [128]

Answer:

  see below

Step-by-step explanation:

A relation is a <em>function</em> when there is exactly one output for each input. That is the case in this table, so the relation between the original price and sale price is a function.

5 0
3 years ago
So, how do owls live. Like I need a serious explanation food,water,sleeping,predators,prey. Or give me all you know. But somethi
pashok25 [27]

<span>Owls are found in many different habitats, such as deserts, forests, prairies and even the Arctic tundra. They nest in trees, in holes in the ground, in barns, and in caves. And while many other birds migrate to warmer places during the winter, most owls do not. They live in the same place all year round.</span>
6 0
3 years ago
Read 2 more answers
Other questions:
  • Is it linear or nonlinear? 3x+4y+2=0
    6·1 answer
  • Solve d = c π for π. A) π = cd B) π = c d C) π = d c D) π = c − d
    14·2 answers
  • (17) geometry help pls
    5·1 answer
  • 6=t/5 what does t equal??
    7·2 answers
  • Find the interior angle on a regular polygon with 45 sides...
    6·1 answer
  • Quiz
    10·1 answer
  • 13 divided by 2? im too lazy to get my calculator
    8·2 answers
  • What is 17 + 64 + 124 + (3^2 x 5) - 14 = ?
    6·1 answer
  • Help pls
    7·1 answer
  • 138.867545518 to 4 decimal places.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!