Answer:
Equilibrium constant of the given reaction is 
Explanation:
....
....
The given reaction can be written as summation of the following reaction-


......................................................................................

Equilibrium constant of this reaction is given as-
![\frac{[NOBr]^{2}}{[N_{2}][O_{2}][Br_{2}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNOBr%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%5BBr_%7B2%7D%5D%7D)
![=(\frac{[NOBr]}{[NO][Br_{2}]^{\frac{1}{2}}})^{2}(\frac{[NO]^{2}}{[N_{2}][O_{2}]})](https://tex.z-dn.net/?f=%3D%28%5Cfrac%7B%5BNOBr%5D%7D%7B%5BNO%5D%5BBr_%7B2%7D%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%29%5E%7B2%7D%28%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%7D%29)


Answer:
11.6g of NH₃(g) have to react
Explanation:
For the reaction:
4 NH₃(g) + 5 O₂(g) → 4 NO(g) + 6 H₂O(g) ΔH = -905kJ
<em>4 moles of ammonia produce 905kJ</em>
Thus, if you want to produce 154kJ of energy you need:
154kJ × (4 mol NH₃ / 905kJ) = <em>0.681moles of NH₃. </em>In mass -Molar mass ammonia is 17.031g/mol-
0.681mol NH₃ × (17.031g / mol) = <em>11.6g of NH₃(g) have to react</em>
Answer:
A. endothermic.
A. Yes, absorbed.
Explanation:
Let's consider the following thermochemical equation.
2 HgO(s) ⇒ 2 Hg(l) + O₂(g) ΔH = 182 kJ
The enthalpy of the reaction is positive (ΔH > 0), which means that the reaction is endothermic.
182 kJ are absorbed when 2 moles of HgO react (molar mass 216.59 g/mol). The heat absorbed when 72.8 g of HgO react is:

I would sat the answer will be condensation if that's one of your choices
1) it explains about stability of an atom by including stationary state.
2) it explains tge quantization of energy.
3) it gives the concept of angular momentum of a revolving electron.