Your answer would be respiration. This would be your answer because, plants take in carbon dioxide, and animals, including humans, breath oxygen. I hope this had helped you out.
<span>Well it depends on percentage by what, but I'll just assume that it's percentage by mass.
For this, we look at the atomic masses of the elements present in the compound.
Cu has an atomic mass of 63.546 amu
Fe has 55.845 amu
and S has 36.065 amu
Since there are 2 molecules of Sulfur for each one of Cu and Fe, we'll multiply the Sulfur atomic weight by 2 to obtain 72.13 amu
So we have not established the mass of the compound in amus
63.546 + 55.845 + 72.13 = 191.521
That is the atomic mass of Chalcopyrite. and Iron's atomic mass is 55.845
So to get the percentage, or fraction of iron, we take 55.845 / 191.521
Which comes out to 29.15% by mass
Mass of the sample is not needed for this calculation, but since the question mentions it I would go ahead and check if the question isn't also asking for the mass of Iron in the sample as well, in which case you just find the 29.15% of 67.7g</span>
And the significant amount of volume can be differed by its solitude
The half life for C14 is 5730 years.
We assume that Carbon 14/ Carbon 12 ratio was steady for living organisms over time, the problem is actually telling us that

= 0.0725 =

ˣ
Take the natural logarithm and In on both sides.
ln(0.725) = ln

ˣ
= - 0.3216 = xln (

= -0.6931x.
So x = (-.3216) / (-0.6931) = 0.464
or
t/t₁/₂ = 0.464
So t = 0.464 x t₁/₂ = 0.464 * 5730 yrs = 2660 years.
I think it's D, because theoretical yield is like, the yield you'd get if 100% of the reactants formed to make product. Well that's how I think of it, but it has something to do with limiting reagents and stuff. Sorry this isn't a really detailed explanation.