Answer:
a = 12 [m/s²]
Explanation:
To solve this problem we must use Newton's second law which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
ΣF = m*a
where:
ΣF = sum of forces acting on a body [N] (units of Newtons)
m = mass = 0.5 [kg]
a = acceleration [m/s²]
Let's take the direction of positive forces to the right and negative forces directed to the left
2 + 8 - 4 = 0.5*a
6 = 0.5*a
a = 12 [m/s²]
Answer:
Plastic heats up faster :)
Explanation:
Answer: The 6 kg rock sitting on a 3.2 m cliff.
Explanation:
The potential energy of an object of mass M that is at a height H above the ground us:
U = M*H*g
where g is the gravitational acceleration:
g = 9.8m/s^2
Then:
"An 8 kg rock sitting on a 2.2 m cliff"
M = 8kg
H = 2.2m
U = 8kg*2.2m*9.8 m/s^2 = 172.48 J
"a 6 kg rock sitting on a 3.2 m cliff"
M = 6kg
H = 3.2m
U = 6kg*3.2m*9.8m/s^2 = 188.16 J
You can see that the 6kg rock on a 3.2m cliff has a larger potential energy.
Answer:
4.5s
Explanation:
A sports car accelerates from zero to 30 mph in 1.5 s.
<h3>
Answer:</h3>
Momentum of the given body will be : 75000 Kg m/s
<h3>
Explanation:</h3>
According to Newton's first law of motion, all bodies continue to be in the state of rest or motion unless an external force is applied on the body. We can use this in the case of momentum also
The formula of momentum is given by :

Here, we are given the mass of the body ( m ) as 3000kg and the velocity of the body ( v ) as 25 m/s. On putting the values in the formula:

Momentum is associated with the mass of the moving body and can be defined as the quantity of motion measured as a product of mass and velocity.