Answer:
-6.8 m/s²
Explanation:
Given:
v₀ = 30.5 m/s
v = 0 m/s
t = 4.5 s
Find: a
a = (v − v₀) / t
a = (0 m/s − 30.5 m/s) / 4.5 s
a = -6.8 m/s²
<span>So we want to know which of the following is the best representation of converting potential energy into kinetic energy. The correct answer is C. A roller coaster rounds a curve to climb the next hill. So before he climbed the hill, the roller coaster had kinetic energy which he used to climb to the hill. Then the potential energy he has on the hill can again be transformed into kinetic energy when he will go down hill. </span>
The energy chain diagram in this case is chemical energy >> energy conversion >> motion (kinetic) energy + thermal energy.
<h3>What is an energy chain diagram?</h3>
An energy chain diagram is a graphic representation indicating the conversion between different types of energies.
Kinetic energy is a type of motion (movement) energy generated by using potential (stored) energy.
Chemical energy (in this case, the fuel of the car) is a type of energy that is stored to perform work.
Learn more about kinetic energy here:
brainly.com/question/25959744
Answer:
A)s = 104.16 m
b)s= 104.16 m
Explanation:
Given that
u = 25 m/s
μ = 0.3
The friction force will act opposite to the direction of motion.
Fr= μ m g
Fr= - m a
a=acceleration
μ m g = - m a
a= - μ g
a= - 0.3 x 10 m/s² ( take g= 10 m/s²)
a= - 3 m/s²
The final speed of the mass is zero ,v= 0
We know that
v² = u² +2 a s
s=distance
0² = 25² - 2 x 3 x s
625 = 6 s
s = 104.16 m
By using energy conservation
Work done by all the forces =Change in the kinetic energy

Negative sign because force act opposite to the displacement.



- 3 x 2 x s = - 625
s= 104.16 m
Gamma rays are the highest energy EM radiation and typically have energies greater than 100 keV, frequencies greater than 1019 Hz, and wavelengths less than 10 picometers.