Terminal speed is the maximum speed that a falling object can reach and is based on aerodynamic resistance. In a vacuum, an object falling toward a planet as a result of gravity will continue to accelerate until it hits the ground.
However, if the object is falling through an atmosphere, such as on earth, then it will accelerate up to the point that the aerodynamic resistance cancels the downward force due to gravity, and it travels at a constant maximum speed, called the terminal velocity. At this point, resistance is equal to acceleration due to gravity. At terminal velocity, the skydiver's acceleration is zero.
Walking at a speed of 2.1 m/s, in the first 2 s John would have walked
(2.1 m/s) (2 s) = 4.2 m
Take this point in time to be the starting point. Then John's distance from the starting line at time <em>t</em> after the first 2 s is
<em>J(t)</em> = 4.2 m + (2.1 m/s) <em>t</em>
while Ryan's position is
<em>R(t)</em> = 100 m - (1.8 m/s) <em>t</em>
where Ryan's velocity is negative because he is moving in the opposite direction.
(b) Solve for the time when they meet. This happens when <em>J(t)</em> = <em>R(t)</em> :
4.2 m + (2.1 m/s) <em>t</em> = 100 m - (1.8 m/s) <em>t</em>
(2.1 m/s) <em>t</em> + (1.8 m/s) <em>t</em> = 100 m - 4.2 m
(3.9 m/s) <em>t</em> = 95.8 m
<em>t</em> = (95.8 m) / (3.9 m/s) ≈ 24.6 s
(a) Evaluate either <em>J(t)</em> or <em>R(t)</em> at the time from part (b).
<em>J</em> (24.6 s) = 4.2 m + (2.1 m/s) (24.6 s) ≈ 55.8 m
Answer:
an electrically charged atom or group of atoms formed by the loss or gain of one or more electrons, as a cation (positive ion), which is created by electron loss and is attracted to the cathode in electrolysis, or as an anion (negative ion), which is created by an electron gain and is attracted to the anode.
Due to rotation of Earth on each day, our East & west gets change in every half day, and comes in it's initial state after a day. So, Stars which are in east relative to a stationary object in the Universe, will be in west relative to Earth after some time, and it changes our view of stars
Hope this helps!
Answer:
-15.708 rad/s^2
Explanation:
First, let us covert everything to the same unit. For me, I find dealing with radians/sec more intuitive, but you can solve it in rpm. We are told that the initial angular speed is 600 rpm and after 4 seconds it stops. Let's convert 600 rpm into radians/sec. To do this, multiply by 2*pi/60. This gives 62.83 rad/s. Now let's review our info:

Now we look up angular kinematics equations and the equation that has these parameters is

Substitute our values in:
