1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DaniilM [7]
3 years ago
5

The pulse site located at the point where the upper leg bends is called the

Physics
1 answer:
VLD [36.1K]3 years ago
3 0
The pulse site located at the point where the upper leg bends is called the femoral. It is an artery found in the thigh. It is large and is deemed as the main arterial supply for the lower part of the body. It is known as the second artery that is the largest. It is being used as the catheter access artery. From it, diagnostics for the heart, brain, arms, kidney and other parts can be directed to the other arterial system. It can also be used as a source to draw blood that is from the arteries when there is low blood pressure.
You might be interested in
Part A What will be the equilibrium temperature when a 227 g block of copper at 283 °C is placed in a 155 g aluminum calorimeter
stellarik [79]

Answer:

T = 20.84°C

Explanation:

From the law of conservation of energy:

Heat Lost by Copper Block = Heat Gained by Aluminum Calorimeter + Heat Gained by Water

m_cC_c\Delta T_c = m_wC_w\Delta T_w + m_aC_a\Delta T_a

where,

m_c = mass of copper = 227 g

m_w = mass of water = 844 g

m_a = mass of aluminum = 155 g

C_c = specific heat capacity of calorimeter = 385 J/kg.°C

C_w = specific heat capacity of water = 4200 J/kg.°C

C_a = specific heat capacity of aluminum = 890 J/kg.°C

\Delta T_c = change in temperature of copper = 283°C - T

\Delta T_w = change in temperature of water = T - 14.6°C

\Delta T_a = change in temperature of aluminum = T - 14.6°C

T = equilibrium temperature = ?

Therefore,

(227\ g)(385\ J/kg.^oC)(283^oC-T)=(844\ g)(4200\ J/kg.^oC)(T-14.6^oC)+(155\ g)(890\ J/kg.^oC)(T-14.6^oC)\\\\24732785\ J - (87395\ J/^oC) T = (3544800\ J/^oC) T - 51754080\ J+ (137950\ J/^oC) T-2014070\ J\\\\24732785\ J +51754080\ J+2014070\ J = (3544800\ J/^oC) T+(137950\ J/^oC+(87395\ J/^oC) T\\\\78560935\ J = (3770145\ J/^oC) T\\\\T = \frac{78560935\ J}{3770145\ J/^oC}

<u>T = 20.84°C</u>

8 0
3 years ago
What is the definition of evolution
Anna35 [415]
<span>the process by which different kinds of living organisms are thought to have developed and diversified from earlier forms during the history of the earth.

Hope this helps.

</span>
7 0
3 years ago
Read 2 more answers
What is the Deepest point of the ocean and where is it?
qaws [65]

Answer:

marinas trench in Pacific Ocean

<h2><em>mark </em><em>it </em><em>as</em><em> </em><em>brainliest</em></h2>
5 0
3 years ago
Read 2 more answers
Fiber-optic cables are used widely for internet wiring, data transmission, and surgeries. When light passes through a fiber-opti
Gwar [14]
After one meter, 3.4% of the light is gone ... either soaked up in the fiber
material or escaped from it.  So only  (100 - 3.4) = 96.6% of the light
remains, to go on to the next meter.

After the second meter,  96.6%  of what entered it emerges from it, and
that's  96.6%  of  96.6%  of the original signal that entered the beginning
of the fiber.

==>  After 2 meters, the intensity has dwindled to  (0.966)² of its original level.
It's that exponent of ' 2 ' that corresponds to the number of meters that the light
has traveled through.

==>  After  'x'  meters of fiber, the remaininglight intensity is (0.966) ^x-power
of its original value.

If you shine 1,500 lumens into the front of the fiber, then after 'x' meters of
cable, you'll have
                                                     <em>(1,500) · (0.966)^x</em>
lumens of light remaining.
 
=========================================

The genius engineers in the fiber design industry would not handle it this way.
When they look up the 'attenuation' of the cable in the fiber manufacturer's
catalog, it would say  "15dB per 100 meters".

What does that mean ?    Break it down:  15dB in 100 meters is <u>0.15dB per meter</u>.
Now, watch this:

Up at the top, the problem told us that the loss in 1 meter is  3.4% .  We applied
super high mathematics to that and calculated that  96.6% remains, or  0.966.

Look at this  ==>      10 log(0.966) =  <em><u>-0.15</u>  </em>  <==  loss per meter, in dB .

Armed with this information, the engineer ... calculating the loss in  'x'  meters of
fiber cable, doesn't have to mess with raising numbers to powers.  All he has to
do is say ...

--  0.15 dB loss per meter

--  'x' meters of cable

--  0.15x dB of loss.

If  'x' happens to be, say,  72 meters, then the loss is  (72) (0.15) = 10.8 dB .

and  10 ^ (-10.8/10) = 10 ^ -1.08 = 0.083  =  <em>8.3%</em>  <== <u>That's</u> how much light
he'll have left after 72 meters, and all he had to do was a simple multiplication.

Sorry. Didn't mean to ramble on. But I do stuff like this every day.
5 0
3 years ago
Dominic made the table below to organize his notes about mixtures. What mistake did Dominic make? The title should read “Propert
Alex17521 [72]

D.........................

8 0
3 years ago
Read 2 more answers
Other questions:
  • According to Ohm’s law, determine the experimental current for these values in Table A.
    10·1 answer
  • What is the total resistance in this circuit?
    8·1 answer
  • Write a balanced chemical equation for the decomposition of solid sodium sulfide in aqueous solution. A) Na2S(s) → Na+(aq) + S(s
    14·2 answers
  • A tub of water is placed in a small room and heat is removed from the room. What will most likely occur if enough heat is remove
    14·2 answers
  • Biologists use ball-and-stick models to study complex molecules by representing atoms with balls and bonds with sticks. DNA is a
    11·1 answer
  • Think of the last five things you read. Now think of a type of reading you havent done recenty
    8·1 answer
  • If you have 10.0 g of a substance that decays with a half-life of 14 days, then how much will you have after 42 days?
    15·1 answer
  • The sun is 1.5 × 108 km from Earth. The index of refraction for water is 1.349. How much longer would it take light from the sun
    5·1 answer
  • Why does the total amount of energy before and after<br> any energy transformations remain the same?
    8·2 answers
  • D) 3. Two objects will attract one another when they have what
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!