1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DaniilM [7]
3 years ago
5

The pulse site located at the point where the upper leg bends is called the

Physics
1 answer:
VLD [36.1K]3 years ago
3 0
The pulse site located at the point where the upper leg bends is called the femoral. It is an artery found in the thigh. It is large and is deemed as the main arterial supply for the lower part of the body. It is known as the second artery that is the largest. It is being used as the catheter access artery. From it, diagnostics for the heart, brain, arms, kidney and other parts can be directed to the other arterial system. It can also be used as a source to draw blood that is from the arteries when there is low blood pressure.
You might be interested in
A repelling force occurs between two charged objects when​
fgiga [73]
<h3>♫ - - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - ♫</h3>

➷ It would be 'when they have like charges.'

'Like charges' means the same charge. For example, two positive charged objects have like charges.

<h3><u>✽</u></h3>

➶ Hope This Helps You!

➶ Good Luck (:

➶ Have A Great Day ^-^

↬ ʜᴀɴɴᴀʜ ♡

4 0
3 years ago
A small box of mass m1 is sitting on a board of mass m2 and length L. The board rests on a frictionless horizontal surface. The
Nadusha1986 [10]

Answer:

The constant force with least magnitude that must be applied to the board in order to pull the board out from under the box is \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}

Explanation:

The Newton’s second law states that the net force on an object is the product of mass of the object and final acceleration of the object. The expression of newton’s second law is,

\sum {F = ma}

Here, is the sum of all the forces on the object, mm is mass of the object, and aa is the acceleration of the object.

The expression for static friction over a horizontal surface is,

F_{\rm{f}}} \leq {\mu _{\rm{s}}}mg

Here, {\mu _{\rm{s}}} is the coefficient of static friction, mm is mass of the object, and g is the acceleration due to gravity.

Use the expression of static friction and solve for maximum static friction for box of mass {m_1}

Substitute  for in the expression of maximum static friction {F_{\rm{f}}} = {\mu _{\rm{s}}}mg

{F_{\rm{f}}} = {\mu _{\rm{s}}}{m_1}g

Use the Newton’s second law for small box and solve for minimum acceleration aa to pull the box out.

Substitute  for , [/tex]{m_1}[/tex] for in the equation .

{F_{\rm{f}}} = {m_1}a

Substitute {\mu _{\rm{s}}}{m_1}g for {F_{\rm{f}}} in the equation {F_{\rm{f}}} = {m_1}a

{\mu _{\rm{s}}}{m_1}g = {m_1}a

Rearrange for a.

a = {\mu _{\rm{s}}}g

The minimum acceleration of the system of two masses at which box starts sliding can be calculated by equating the pseudo force on the mass with the maximum static friction force.

The pseudo force acts on in the direction opposite to the motion of the board and the static friction force on this mass acts in the direction opposite to the pseudo force. If these two forces are cancelled each other (balanced), then the box starts sliding.

Use the Newton’s second law for the system of box and the board.

Substitute for for in the equation .

{F_{\min }} = \left( {{m_1} + {m_2}} \right)a

Substitute for in the above equation .

{F_{\min }} = \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}g

The constant force with least magnitude that must be applied to the board in order to pull the board out from under the box is \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}g

There is no friction between the board and the surface. So, the force required to accelerate the system with the minimum acceleration to slide the box over the board is equal to total mass of the board and box multiplied by the acceleration of the system.

5 0
3 years ago
A shot-putter accelerates a 7.2 kg shot from rest to 17 m/s . what work did the shot-putter do on the ball?
garri49 [273]
<span>1.0x10^3 Joules The kinetic energy a body has is expressed as the equation E = 0.5 M V^2 where E = Energy M = Mass V = Velocity Since the shot was at rest, the initial energy is 0. Let's calculate the energy that the shot has while in motion E = 0.5 * 7.2 kg * (17 m/s)^2 E = 3.6 kg * 289 m^2/s^2 E = 1040.4 kg*m^2/s^2 E = 1040.4 J So the work performed on the shot was 1040.4 Joules. Rounding the result to 2 significant figures gives 1.0x10^3 Joules</span>
6 0
3 years ago
During a chemical reaction, increasing the temperature often
Nadya [2.5K]

Answer:c

Explanation:

the rate of reaction increases as temperature increases

5 0
3 years ago
Compare the earths climate today with its climate during an ice age.
tresset_1 [31]
It’s a lot warmer now
Than it is during an ice age
5 0
3 years ago
Other questions:
  • A flat, 101 turn current‑carrying loop is immersed in a uniform magnetic field. The area of the loop is 5.61×10−4 m2, and the an
    10·1 answer
  • Does melting change substances into other substances?
    7·2 answers
  • What two aspects of a force do scientists measure?
    15·1 answer
  • A child operating a radio-controlled model car on a dock accidentally steers it off the edge. The car's displacement 0.91 s afte
    15·1 answer
  • An electric fan is turned off, and its angular velocity decreases uniformly from 550 rev/min to 180 rev/min in a time interval o
    6·1 answer
  • Kiley went 5.7 km/h north and then went 5.8 km/h west. From start to finish, she went 8.1 km/h northwest. Which best describes h
    11·1 answer
  • I WILL MARK YOU TOP IF YOU HELP ME I NEED THIS ASAP!!!!
    9·1 answer
  • The number of protons is called the atomic ____ and its the fundamental organizing principle of every table of the elements
    6·2 answers
  • Please, can somebody help me with this project? I'll give brainlest for the best answer! (Do not answer if you don't know or onl
    10·1 answer
  • A rock falls off a cliff. How fast will it be going after falling for 4.33 seconds?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!