Define an x-y coordinate system such that
The positive x-axis = the eastern direction, with unit vector

.
The positive y-axis = the northern direction, with unit vector

.
The airplane flies at 340 km/h at 12° east of north. Its velocity vector is

The wind blows at 40 km/h in the direction 34° south of east. Its velocity vector is
![\vec{v}_{2} =40(cos(34^{o})\hat{i} - sin(24^{o})]\hat{j}) = 33.1615\hat{i} -22.3677\hat{j})](https://tex.z-dn.net/?f=%5Cvec%7Bv%7D_%7B2%7D%20%3D40%28cos%2834%5E%7Bo%7D%29%5Chat%7Bi%7D%20-%20sin%2824%5E%7Bo%7D%29%5D%5Chat%7Bj%7D%29%20%3D%2033.1615%5Chat%7Bi%7D%20-22.3677%5Chat%7Bj%7D%29)
The plane's actual velocity is the vector sum of the two velocities. It is

The magnitude of the actual velocity is
v = √(121.1615² + 306.0473²) = 329.158 km/h
The angle that the velocity makes north of east is
tan⁻¹ (306.04733/121.1615) = 21.6°
Answer:
The actual velocity is 329.2 km/h at 21.6° north of east.
Answer:
The normal force the seat exerted on the driver is 125 N.
Explanation:
Given;
mass of the car, m = 2000 kg
speed of the car, u = 100 km/h = 27.78 m/s
radius of curvature of the hill, r = 100 m
mass of the driver, = 60 kg
The centripetal force of the driver at top of the hill is given as;

where;
Fc is the centripetal force
is downward force due to weight of the driver
is upward or normal force on the drive

Therefore, the normal force the seat exerted on the driver is 125 N.
<h3><u>Answer;</u></h3>
a) 5.00 x 10^8 J
<h3><u>Explanation;</u></h3>
The work done to move the sailboat is calculated through the equation;
W = F x d
where F is force and d is the distance.
Substituting the known values from the given above,
W = (5.00 x 10⁴ N)(10 km)(1000 m/ 1km)
= 5.00 x 10⁸ J
Thus, the work done is <u>5.00 x 10⁸Joules</u>
If it is the same vehicle, then the 60mph vehicle has more kinetic energy since it is moving faster. Therefore, it requires more energy to stop, and if it is the same car with the same beak system, the braking distance of the 30mph car will be significantly shorter than the 60mph car.