Answer:
a) 40 V
b) 69.23 V
c) 69.23 V
Explanation:
See attachment for solution
Answer:
a) The module's acceleration in a vertical takeoff from the Moon will be 
b) Then we can say that a thrust of
won't be able to lift off the module from the Earth because it's smaller than the module's weight (
).
Explanation:
a) During a vertical takeoff, the sum of the forces in the vertical axis will be equal to mass times the module's acceleration. In this this case, the thrust of the module's engines and the total module's weight are the only vertical forces. (In the Moon, the module's weight will be equal to its mass times the Moon's gravity acceleration)

Where:
thrust 
module's mass 
moon's gravity acceleration 
module's acceleration during takeoff
Then, we can find the acceleration like this:


The module's acceleration in a vertical takeoff from the Moon will be 
b) To takeoff, the module's engines must generate a thrust bigger than the module's weight, which will be its mass times the Earth's gravity acceleration.

Then we can say that a thrust of
won't be able to lift off the module from the Earth because it's smaller than the module's weight (
).
Hi there!
We can use the following relationship between the Potential Difference and the Electric field:

V = Potential Difference (500V)
E = Electric Field (V/m)
d = separation between plates (0.2 m)
We can rearrange the equation to solve for the electric field:

Plug in the given values.

Recall that

At its maximum height
, the toy will have 0 vertical velocity, so that


For the toy to reach this maximum height, it takes time
such that

which means it takes twice this time, i.e.
, for the toy to reach its original position.
The velocity of the toy when it falls 1.0 m below its starting point is



where we took the negative square root because we expect the toy to be moving in the downward direction.
SONAR stands for "sound navigation and ranging,” and it is used to map and explore the ocean floor.