Answer:
Solution
verified
Verified by Toppr
(a) The labelled diagram is shown.
(b) The refractive index of diamond is 2.42. Refractive index of diamond is the ratio of the speed of light in air to the speed of light in diamond.i.e.,
μ=
Speedoflightindiamond
Speedoflightinair
and, the ratio of these velocities is 2.42. i.e., This means that the speed of light in diamond will reduce by a factor of 2.42 as compared to its speed in air. In other words, the speed of light in diamond is
1/2.42
times the speed of light in vacuum.
Explanation:
a) Draw and label the diagram given :
(i) Incident ray
(ii) Refracted ray
(iii) Emergent ray
(iv) Angle of reflection
(v) Angle of deviation
(v) Angle of emergence
(b) The refractive index of diamond is 2.42. What is the meaning of this statement in relation to speed of light?
Answer:
B) R1 = 6 V and R2 = 6V
Explanation:
In series, both resistors will carry the same current.
that current will be I = V/R = 12 / (10 + 10) = 0.6 A
The voltage drop across each resistor is V = IR = 0.6(10) = 6 V
Answer:
I think it is difficult to determine what has caused climate change in the distant past because it must have been a long time ago so geologists can't carry out different experiments and figure out what gases the planet had conjured, so geologists can only make predictions based off the evidence they currently have from what the planet looked like before. The planet must have changed over the years, therefore the climate has also changed in the future, so they cannot work with how the planet looked in the past.
Answer:
-
Explanation:
We are given that
Mass of cars= m=1900 kg
Initial speed of car=u=20 m/s
Final speed of car=v=0
Time=
=1.3 s
We have to find the average force exerted on the car.
Average force=



Hence, the average force exerted on the car that hits a line of water barrels=-
Answer:
When the velocity doesn't change its direction
Explanation:
Since velocity vector has 2 components: direction and magnitude, and speed is the velocity's magnitude. So if the velocity doesn't change its direction, we essentially use its magnitude, aka speed, to calculate the rate of change for acceleration.