Answer:
Explanation:
initial velocity u = 32.7 m /s
final velocity v = 50.3 m /s
displacement s = 44500 m
acceleration a = ?
v² = u² + 2 a s
50.3² = 32.7² + 2 x a x 44500
2530.09 = 1069.29 + 89000a
a .016 m /s²
time taken t = ?
v = u + at
50.3 = 32.7 + .016 t
t = 1100 s
Answer:
The Sun is a natural source for visible light waves and our eyes see the reflection of this sunlight off the objects around us.
An object with non-zero mass (even negligible mass is non-zero) will never reach the speed of light. Due to relativistic effects, each "unit" of acceleration becomes less effective at increasing your velocity (relative to some other object, of course) as your relative velocity approaches the speed of light.
And even if there was a way, If you would accelerate to the 99,99% of the speed light in just 1 second, you would experience a G-force of aprox. 30,600,000 g's which is enough to kill you in a few seconds
Answer:
22.2 W
Explanation:
First of all, we calculate the work done by moving the wagon, using the formula:

where
F = 20 N is the magnitude of the force
d = 1000 m is the displacement of the wagon
is the angle between the direction of the force and of the displacement (assuming the force is applied in the direction of motion)
Substituting, we find

Now we can find the power generated, which is equal to the ratio between the work done and the time taken:

where
W = 20,000 J
t = 15 min = 900 s
Substituting,

And the same value in Joules/second (remember that 1 Watt = 1 Joule/second)
Answer:
C
Explanation:
the plant cools itself down by allowing water to evaporate from their leaves so it doesn't need water to cool down