Check the picture below.
let's firstly convert the mixed fractions to improper fractions.
![\stackrel{mixed}{7\frac{1}{2}}\implies \cfrac{7\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{15}{2}} ~\hfill \stackrel{mixed}{12\frac{1}{2}}\implies \cfrac{12\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{25}{2}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B7%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B7%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B15%7D%7B2%7D%7D%20~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B12%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B12%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B25%7D%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\stackrel{\textit{\Large Areas}}{\stackrel{two~triangles}{2\left[ \cfrac{1}{2}\left(\cfrac{15}{2} \right)(10) \right]}~~ + ~~\stackrel{\textit{three rectangles}}{(10)(15)~~ + ~~\left( \cfrac{15}{2} \right)(15)~~ + ~~\left( \cfrac{25}{2} \right)(15)}} \\\\\\ 75~~ + ~~150~~ + ~~112.5~~ + ~~187.5\implies \boxed{525}](https://tex.z-dn.net/?f=%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cstackrel%7Btwo~triangles%7D%7B2%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%5Cleft%28%5Ccfrac%7B15%7D%7B2%7D%20%5Cright%29%2810%29%20%5Cright%5D%7D~~%20%2B%20~~%5Cstackrel%7B%5Ctextit%7Bthree%20rectangles%7D%7D%7B%2810%29%2815%29~~%20%2B%20~~%5Cleft%28%20%5Ccfrac%7B15%7D%7B2%7D%20%5Cright%29%2815%29~~%20%2B%20~~%5Cleft%28%20%5Ccfrac%7B25%7D%7B2%7D%20%5Cright%29%2815%29%7D%7D%20%5C%5C%5C%5C%5C%5C%2075~~%20%2B%20~~150~~%20%2B%20~~112.5~~%20%2B%20~~187.5%5Cimplies%20%5Cboxed%7B525%7D)
Answer:
Any negative and positive number can be your coordinates.
Step-by-step explanation:
As long as you don't have any restrictions as to what the coordinates can be, you're good to go!
Hope this helps!
Respuesta para tu pregunta jaja
1)
![(-2+\sqrt{-5})^2\implies (-2+\sqrt{-1\cdot 5})^2\implies (-2+\sqrt{-1}\sqrt{5})^2\implies (-2+i\sqrt{5})^2 \\\\\\ (-2+i\sqrt{5})(-2+i\sqrt{5})\implies +4-2i\sqrt{5}-2i\sqrt{5}+(i\sqrt{5})^2 \\\\\\ 4-4i\sqrt{5}+[i^2(\sqrt{5})^2]\implies 4-4i\sqrt{5}+[-1\cdot 5] \\\\\\ 4-4i\sqrt{5}-5\implies -1-4i\sqrt{5}](https://tex.z-dn.net/?f=%28-2%2B%5Csqrt%7B-5%7D%29%5E2%5Cimplies%20%28-2%2B%5Csqrt%7B-1%5Ccdot%205%7D%29%5E2%5Cimplies%20%28-2%2B%5Csqrt%7B-1%7D%5Csqrt%7B5%7D%29%5E2%5Cimplies%20%28-2%2Bi%5Csqrt%7B5%7D%29%5E2%20%5C%5C%5C%5C%5C%5C%20%28-2%2Bi%5Csqrt%7B5%7D%29%28-2%2Bi%5Csqrt%7B5%7D%29%5Cimplies%20%2B4-2i%5Csqrt%7B5%7D-2i%5Csqrt%7B5%7D%2B%28i%5Csqrt%7B5%7D%29%5E2%20%5C%5C%5C%5C%5C%5C%204-4i%5Csqrt%7B5%7D%2B%5Bi%5E2%28%5Csqrt%7B5%7D%29%5E2%5D%5Cimplies%204-4i%5Csqrt%7B5%7D%2B%5B-1%5Ccdot%205%5D%20%5C%5C%5C%5C%5C%5C%204-4i%5Csqrt%7B5%7D-5%5Cimplies%20-1-4i%5Csqrt%7B5%7D)
3)
let's recall that the conjugate of any pair a + b is simply the same pair with a different sign, namely a - b and the reverse is also true, let's also recall that i² = -1.
![\cfrac{6-7i}{1-2i}\implies \stackrel{\textit{multiplying both sides by the denominator's conjugate}}{\cfrac{6-7i}{1-2i}\cdot \cfrac{1+2i}{1+2i}\implies \cfrac{(6-7i)(1+2i)}{\underset{\textit{difference of squares}}{(1-2i)(1+2i)}}} \\\\\\ \cfrac{(6-7i)(1+2i)}{1^2-(2i)^2}\implies \cfrac{6-12i-7i-14i^2}{1-(2^2i^2)}\implies \cfrac{6-19i-14(-1)}{1-[4(-1)]} \\\\\\ \cfrac{6-19i+14}{1-(-4)}\implies \cfrac{20-19i}{1+4}\implies \cfrac{20-19i}{5}\implies \cfrac{20}{5}-\cfrac{19i}{5}\implies 4-\cfrac{19i}{5}](https://tex.z-dn.net/?f=%5Ccfrac%7B6-7i%7D%7B1-2i%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20the%20denominator%27s%20conjugate%7D%7D%7B%5Ccfrac%7B6-7i%7D%7B1-2i%7D%5Ccdot%20%5Ccfrac%7B1%2B2i%7D%7B1%2B2i%7D%5Cimplies%20%5Ccfrac%7B%286-7i%29%281%2B2i%29%7D%7B%5Cunderset%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%281-2i%29%281%2B2i%29%7D%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B%286-7i%29%281%2B2i%29%7D%7B1%5E2-%282i%29%5E2%7D%5Cimplies%20%5Ccfrac%7B6-12i-7i-14i%5E2%7D%7B1-%282%5E2i%5E2%29%7D%5Cimplies%20%5Ccfrac%7B6-19i-14%28-1%29%7D%7B1-%5B4%28-1%29%5D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B6-19i%2B14%7D%7B1-%28-4%29%7D%5Cimplies%20%5Ccfrac%7B20-19i%7D%7B1%2B4%7D%5Cimplies%20%5Ccfrac%7B20-19i%7D%7B5%7D%5Cimplies%20%5Ccfrac%7B20%7D%7B5%7D-%5Ccfrac%7B19i%7D%7B5%7D%5Cimplies%204-%5Ccfrac%7B19i%7D%7B5%7D)
Answer:
-36
Step-by-step explanation:
-48+12=-36