1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rainbow [258]
3 years ago
11

Two 4-grams paper towels are identical except for their thermal energies. Which paper towel has a higher temperature.

Chemistry
1 answer:
anygoal [31]3 years ago
5 0

Answer:

a- The paper towel with more thermal energy

Explanation:

The paper towel with a higher temperature is one with more thermal energy.

Temperature is the degree of hotness or coldness of a body. And it is a measure of the average kinetic energy of the particles within a medium or body.

As body gains more thermal energy which is a form of kinetic energy, the average kinetic energy of its particles increases.

This will in turn lead to an increase in the temperature of the substance.

So, the paper towel with more thermal energy will have a higher temperature.

You might be interested in
The half-life of cesium-137 is 30 years. Suppose we have a 180 mg sample. Find the mass that remains after t years. Let y(t) be
Stels [109]

Explanation:

1) Initial mass of the Cesium-137=N_o= 180 mg

Mass of Cesium after time t = N

Formula used :

N=N_o\times e^{-\lambda t}\\\\\lambda =\frac{0.693}{t_{\frac{1}{2}}}

Half life of the cesium-137 = t_{1/2}=30 years[p/tex]where,
[tex]N_o = initial mass of isotope

N = mass of the parent isotope left after the time, (t)

t_{\frac{1}{2}} = half life of the isotope

\lambda = rate constant

N=N_o\times e^{-(\frac{0.693}{t_{1/2}})\times t}

Now put all the given values in this formula, we get

N=180mg\times e^{-\frac{0.693}{30 years}\times t}

Mass that remains after t years.

N=180 mg\times e^{0.0231 year^{-1}\times t}

Therefore, the parent isotope remain after one half life will be, 100 grams.

2)

t = 70 years

N_o=180 mg

t_{1/2}= 30 yeras

N=180mg\times e^{-\frac{0.693}{30 years}\times 70 years}

N = 35.73 mg

35.73 mg of cesium-137 will remain after 70 years.

3)

N_o=180 mg

t_{1/2}= 30 yeras

N = 1 mg

t = ?

1 mg =180mg\times e^{-\frac{0.693}{30 years}\times t}

\frac{-30 year}{0.693}\times \ln \frac{1 mg}{180 mg}=t

t = 224.80 years ≈ 225 years

After 225 years only 1 mg of cesium-137 will remain.

7 0
3 years ago
1s^2 2s^2 2p^6 3s^2 3p^6 how many unpaired electrons are in the atom represented by the electron configuration above?
Sedbober [7]
It's a combination of factors:
Less electrons paired in the same orbital
More electrons with parallel spins in separate orbitals
Pertinent valence orbitals NOT close enough in energy for electron pairing to be stabilized enough by large orbital size
DISCLAIMER: Long answer, but it's a complicated issue, so... :)
A lot of people want to say that it's because a "half-filled subshell" increases stability, which is a reason, but not necessarily the only reason. However, for chromium, it's the significant reason.
It's also worth mentioning that these reasons are after-the-fact; chromium doesn't know the reasons we come up with; the reasons just have to be, well, reasonable.
The reasons I can think of are:
Minimization of coulombic repulsion energy
Maximization of exchange energy
Lack of significant reduction of pairing energy overall in comparison to an atom with larger occupied orbitals
COULOMBIC REPULSION ENERGY
Coulombic repulsion energy is the increased energy due to opposite-spin electron pairing, in a context where there are only two electrons of nearly-degenerate energies.
So, for example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is higher in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier on us, we can crudely "measure" the repulsion energy with the symbol
Π
c
. We'd just say that for every electron pair in the same orbital, it adds one
Π
c
unit of destabilization.
When you have something like this with parallel electron spins...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
It becomes important to incorporate the exchange energy.
EXCHANGE ENERGY
Exchange energy is the reduction in energy due to the number of parallel-spin electron pairs in different orbitals.
It's a quantum mechanical argument where the parallel-spin electrons can exchange with each other due to their indistinguishability (you can't tell for sure if it's electron 1 that's in orbital 1, or electron 2 that's in orbital 1, etc), reducing the energy of the configuration.
For example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is lower in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier for us, a crude way to "measure" exchange energy is to say that it's equal to
Π
e
for each pair that can exchange.
So for the first configuration above, it would be stabilized by
Π
e
(
1
↔
2
), but the second configuration would have a
0
Π
e
stabilization (opposite spins; can't exchange).
PAIRING ENERGY
Pairing energy is just the combination of both the repulsion and exchange energy. We call it
Π
, so:
Π
=
Π
c
+
Π
e

Inorganic Chemistry, Miessler et al.
Inorganic Chemistry, Miessler et al.
Basically, the pairing energy is:
higher when repulsion energy is high (i.e. many electrons paired), meaning pairing is unfavorable
lower when exchange energy is high (i.e. many electrons parallel and unpaired), meaning pairing is favorable
So, when it comes to putting it together for chromium... (
4
s
and
3
d
orbitals)
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
compared to
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
is more stable.
For simplicity, if we assume the
4
s
and
3
d
electrons aren't close enough in energy to be considered "nearly-degenerate":
The first configuration has
Π
=
10
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
1
↔
5
,
2
↔
3
,

2
↔
4
,
2
↔
5
,
3
↔
4
,
3
↔
5
,
4
↔
5
)
The second configuration has
Π
=
Π
c
+
6
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
2
↔
3
,
2
↔
4
,
3
↔
4
)
Technically, they are about
3.29 eV
apart (Appendix B.9), which means it takes about
3.29 V
to transfer a single electron from the
3
d
up to the
4
s
.
We could also say that since the
3
d
orbitals are lower in energy, transferring one electron to a lower-energy orbital is helpful anyways from a less quantitative perspective.
COMPLICATIONS DUE TO ORBITAL SIZE
Note that for example,
W
has a configuration of
[
X
e
]
5
d
4
6
s
2
, which seems to contradict the reasoning we had for
Cr
, since the pairing occurred in the higher-energy orbital.
But, we should also recognize that
5
d
orbitals are larger than
3
d
orbitals, which means the electron density can be more spread out for
W
than for
Cr
, thus reducing the pairing energy
Π
.
That is,
Π
W
5 0
3 years ago
Read 2 more answers
HEELLPP PLEASE IM BEGGING ILL GIVE BRAINLIEST
Arisa [49]

Answer:

C

Explanation:

You mix different thing together to make a new thing.

6 0
3 years ago
Balance the following equation. __AI+ __CuO __AI203+ _Cu
Nesterboy [21]
2 Al+ 3 CuO-> 1 Al2O3+ 3Cu
7 0
2 years ago
Never mind wrong question
Leokris [45]
Its okay my friend. you dont need to over stress it.
7 0
3 years ago
Read 2 more answers
Other questions:
  • N2(g) + 3h2(g) ⇌ 2nh3(g) the equilibrium constant kc at 375°c is 1.2. starting with [h2]0 = 0.76 m, [n2]0 = 0.60 m and [nh3]0 =
    9·1 answer
  • Which of the following best describes temperature?
    15·2 answers
  • A liquid that occupies a volume of 9.0 L has a mass of 7.2 kg. What is the density of the liquid in kg/L ?
    10·2 answers
  • THE LAST QUESTION I NEED, PLEASE HELP! WILL MARK BRAINLIEST IF CORRECT!
    10·1 answer
  • A scientist has isolated a fatty acid that has 26 carbons bonded together. All of the carbon atoms in the chain are connected by
    7·1 answer
  • What is the δg for the following reaction at 25°c? so3(g) h2o(l) → h2so4(l) given: so3(g):δg= –368 kjper mole h2o(l):δg= –237 kj
    6·1 answer
  • How many grams of H2O will be formed when 36.8 g H2 is mixed with 40.2 g O2 and allowed to completely react to form water
    14·1 answer
  • Given the reaction: N2(g) +2O2(g) ⇌ 2NO2(g) The forward reaction is endothermic. Determine which of the following changes would
    12·1 answer
  • A certain reaction is spontaneous at temperatures below 400. K but is not spontaneous at temperatures above 400. K. If ΔH° for t
    13·1 answer
  • 3. In the apparatus below, the seawater is an example of a(n) ——
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!