Answer: the line Spectra of hydrogen lies between the ultra-violet, visible light and infra-red of the electro magnetic spectrum
Explanation:
Electromagnetic radiation spans an wide range of wavelengths and frequencies. This range is called the electromagnetic spectrum. The electromagnetic spectrum is generally divided into seven regions, in order of decreasing wavelength and increasing energy and frequency. The 7 regions includes; radio waves, microwaves, infrared (IR), visible light, ultraviolet (UV), X-rays and gamma rays.
lower-energy radiation, such as radio waves, is expressed as frequency while microwaves, infrared, visible and UV light are usually expressed as wavelength and finally, higher-energy radiation such as X-rays and gamma rays, is expressed in terms of energy per photon.
Therefore, hydrogen lies between the ultra-violet, visible light and infra-red region of the electro magnetic spectrum.
Balanced:
1. <span>Na2O + H2O ---> 2NaOH
2. </span><span>K2O + H2O ---> 2KOH
3. </span><span>MgO + H2O ---> Mg(OH)2
4. </span><span>CaO + H2O ---> Ca(OH)2
5. </span><span>SO2 + H2O ⇄ H2SO3
6. </span>SO3 + H2O ---> H2SO4
All except by 2 were balanced.
Answer:
0.0017 Hz
Explanation:
the solution is in the photo
Since the container of the gas is rigid, the volume of the gas will remain constant. Therefore, when the number of particles were decreased in half then the pressure will also be half of the original given they both are subjected to the same temperature.
PV = nRT
V, T and R are constants so they can be lumped together to a constant k.
P/n = k
P1/n1 = P2/n2
since n2 = n1/2
P1/n1 = P2/<span>n1/2</span>
P2 = P1/2