Answer:
Several principal emissions result from coal combustion: Sulfur dioxide (SO2), which contributes to acid rain and respiratory illnesses.
Explanation:
<h3><em>
hehe.</em></h3>
Answer:
-514 kJ/mol
Explanation:
The bond enthalpy which is also known as bond energy can be defined as the amount of energy needed to split one mole of the stated bond. The change in enthalpy of a given reaction can be estimated by subtracting the sum of the bond energies of the reactants from the sum of the bond energies of the products.
For the given chemical reaction, the change in enthalpy of the reaction is:
Δ
[2(409) + 4(388) + 3(496) - 4(630) - 4(463)] kJ/mol = 818 + 1552 + 1488 - 2520 - 1852 = -514 kJ/mol
Answer:
Chlorine atoms are smaller
Explanation:
Magnesium have more electrons than chlorine.
Answer: A mass of 124457.96 g ammonia is produced by reacting a 450 L sample of nitrogen gas at a temperature of 450 K and a pressure of 300 atm.
Explanation:
Given: Volume = 450 L
Temperature = 450 K
Pressure = 300 atm
Using ideal gas equation, moles of nitrogen are calculated as follows.
PV = nRT
where,
P = pressure
V = volume
n = no. of moles
R = gas constant = 0.0821 L atm/mol K
T = tempertaure
Substitute values into the above formula as follows.

According to the given equation, 1 mole of nitrogen forms 2 moles of ammonia. So, moles of ammonia formed by 3654.08 moles of nitrogen is as follows.

As moles is the mass of substance divided by its molar mass. So, mass of ammonia (molar mass = 17.03 g/mol) is as follows.

Thus, we can conclude that a mass of 124457.96 g ammonia is produced by reacting a 450 L sample of nitrogen gas at a temperature of 450 K and a pressure of 300 atm.